We consider the system Applicative_first_order_05__#3.10. Alphabet: 0 : [] --> b add : [b * c] --> c app : [c * c] --> c eq : [b * b] --> a false : [] --> a filter : [b -> a * c] --> c filter2 : [a * b -> a * b * c] --> c if!fac6220min : [a * c] --> b if!fac6220minsort : [a * c * c] --> c if!fac6220rm : [a * b * c] --> c le : [b * b] --> a map : [b -> b * c] --> c min : [c] --> b minsort : [c * c] --> c nil : [] --> c rm : [b * c] --> c s : [b] --> b true : [] --> a Rules: eq(0, 0) => true eq(0, s(x)) => false eq(s(x), 0) => false eq(s(x), s(y)) => eq(x, y) le(0, x) => true le(s(x), 0) => false le(s(x), s(y)) => le(x, y) app(nil, x) => x app(add(x, y), z) => add(x, app(y, z)) min(add(x, nil)) => x min(add(x, add(y, z))) => if!fac6220min(le(x, y), add(x, add(y, z))) if!fac6220min(true, add(x, add(y, z))) => min(add(x, z)) if!fac6220min(false, add(x, add(y, z))) => min(add(y, z)) rm(x, nil) => nil rm(x, add(y, z)) => if!fac6220rm(eq(x, y), x, add(y, z)) if!fac6220rm(true, x, add(y, z)) => rm(x, z) if!fac6220rm(false, x, add(y, z)) => add(y, rm(x, z)) minsort(nil, nil) => nil minsort(add(x, y), z) => if!fac6220minsort(eq(x, min(add(x, y))), add(x, y), z) if!fac6220minsort(true, add(x, y), z) => add(x, minsort(app(rm(x, y), z), nil)) if!fac6220minsort(false, add(x, y), z) => minsort(y, add(x, z)) map(f, nil) => nil map(f, add(x, y)) => add(f x, map(f, y)) filter(f, nil) => nil filter(f, add(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => add(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] eq#(s(X), s(Y)) =#> eq#(X, Y) 1] le#(s(X), s(Y)) =#> le#(X, Y) 2] app#(add(X, Y), Z) =#> app#(Y, Z) 3] min#(add(X, add(Y, Z))) =#> if!fac6220min#(le(X, Y), add(X, add(Y, Z))) 4] min#(add(X, add(Y, Z))) =#> le#(X, Y) 5] if!fac6220min#(true, add(X, add(Y, Z))) =#> min#(add(X, Z)) 6] if!fac6220min#(false, add(X, add(Y, Z))) =#> min#(add(Y, Z)) 7] rm#(X, add(Y, Z)) =#> if!fac6220rm#(eq(X, Y), X, add(Y, Z)) 8] rm#(X, add(Y, Z)) =#> eq#(X, Y) 9] if!fac6220rm#(true, X, add(Y, Z)) =#> rm#(X, Z) 10] if!fac6220rm#(false, X, add(Y, Z)) =#> rm#(X, Z) 11] minsort#(add(X, Y), Z) =#> if!fac6220minsort#(eq(X, min(add(X, Y))), add(X, Y), Z) 12] minsort#(add(X, Y), Z) =#> eq#(X, min(add(X, Y))) 13] minsort#(add(X, Y), Z) =#> min#(add(X, Y)) 14] if!fac6220minsort#(true, add(X, Y), Z) =#> minsort#(app(rm(X, Y), Z), nil) 15] if!fac6220minsort#(true, add(X, Y), Z) =#> app#(rm(X, Y), Z) 16] if!fac6220minsort#(true, add(X, Y), Z) =#> rm#(X, Y) 17] if!fac6220minsort#(false, add(X, Y), Z) =#> minsort#(Y, add(X, Z)) 18] map#(F, add(X, Y)) =#> map#(F, Y) 19] filter#(F, add(X, Y)) =#> filter2#(F X, F, X, Y) 20] filter2#(true, F, X, Y) =#> filter#(F, Y) 21] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) app(nil, X) => X app(add(X, Y), Z) => add(X, app(Y, Z)) min(add(X, nil)) => X min(add(X, add(Y, Z))) => if!fac6220min(le(X, Y), add(X, add(Y, Z))) if!fac6220min(true, add(X, add(Y, Z))) => min(add(X, Z)) if!fac6220min(false, add(X, add(Y, Z))) => min(add(Y, Z)) rm(X, nil) => nil rm(X, add(Y, Z)) => if!fac6220rm(eq(X, Y), X, add(Y, Z)) if!fac6220rm(true, X, add(Y, Z)) => rm(X, Z) if!fac6220rm(false, X, add(Y, Z)) => add(Y, rm(X, Z)) minsort(nil, nil) => nil minsort(add(X, Y), Z) => if!fac6220minsort(eq(X, min(add(X, Y))), add(X, Y), Z) if!fac6220minsort(true, add(X, Y), Z) => add(X, minsort(app(rm(X, Y), Z), nil)) if!fac6220minsort(false, add(X, Y), Z) => minsort(Y, add(X, Z)) map(F, nil) => nil map(F, add(X, Y)) => add(F X, map(F, Y)) filter(F, nil) => nil filter(F, add(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => add(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 1 * 2 : 2 * 3 : 5, 6 * 4 : 1 * 5 : 3, 4 * 6 : 3, 4 * 7 : 9, 10 * 8 : 0 * 9 : 7, 8 * 10 : 7, 8 * 11 : 14, 15, 16, 17 * 12 : 0 * 13 : 3, 4 * 14 : 11, 12, 13 * 15 : 2 * 16 : 7, 8 * 17 : 11, 12, 13 * 18 : 18 * 19 : 20, 21 * 20 : 19 * 21 : 19 This graph has the following strongly connected components: P_1: eq#(s(X), s(Y)) =#> eq#(X, Y) P_2: le#(s(X), s(Y)) =#> le#(X, Y) P_3: app#(add(X, Y), Z) =#> app#(Y, Z) P_4: min#(add(X, add(Y, Z))) =#> if!fac6220min#(le(X, Y), add(X, add(Y, Z))) if!fac6220min#(true, add(X, add(Y, Z))) =#> min#(add(X, Z)) if!fac6220min#(false, add(X, add(Y, Z))) =#> min#(add(Y, Z)) P_5: rm#(X, add(Y, Z)) =#> if!fac6220rm#(eq(X, Y), X, add(Y, Z)) if!fac6220rm#(true, X, add(Y, Z)) =#> rm#(X, Z) if!fac6220rm#(false, X, add(Y, Z)) =#> rm#(X, Z) P_6: minsort#(add(X, Y), Z) =#> if!fac6220minsort#(eq(X, min(add(X, Y))), add(X, Y), Z) if!fac6220minsort#(true, add(X, Y), Z) =#> minsort#(app(rm(X, Y), Z), nil) if!fac6220minsort#(false, add(X, Y), Z) =#> minsort#(Y, add(X, Z)) P_7: map#(F, add(X, Y)) =#> map#(F, Y) P_8: filter#(F, add(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f), (P_3, R_0, m, f), (P_4, R_0, m, f), (P_5, R_0, m, f), (P_6, R_0, m, f), (P_7, R_0, m, f) and (P_8, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative), (P_4, R_0, computable, formative), (P_5, R_0, computable, formative), (P_6, R_0, computable, formative), (P_7, R_0, computable, formative) and (P_8, R_0, computable, formative) is finite. We consider the dependency pair problem (P_8, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, add(X, Y))) = add(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_8, R_0, computable, f) by (P_9, R_0, computable, f), where P_9 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative), (P_4, R_0, computable, formative), (P_5, R_0, computable, formative), (P_6, R_0, computable, formative), (P_7, R_0, computable, formative) and (P_9, R_0, computable, formative) is finite. We consider the dependency pair problem (P_9, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative), (P_4, R_0, computable, formative), (P_5, R_0, computable, formative), (P_6, R_0, computable, formative) and (P_7, R_0, computable, formative) is finite. We consider the dependency pair problem (P_7, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, add(X, Y))) = add(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_7, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative), (P_4, R_0, computable, formative), (P_5, R_0, computable, formative) and (P_6, R_0, computable, formative) is finite. We consider the dependency pair problem (P_6, R_0, computable, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_6, R_0) are: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) app(nil, X) => X app(add(X, Y), Z) => add(X, app(Y, Z)) min(add(X, nil)) => X min(add(X, add(Y, Z))) => if!fac6220min(le(X, Y), add(X, add(Y, Z))) if!fac6220min(true, add(X, add(Y, Z))) => min(add(X, Z)) if!fac6220min(false, add(X, add(Y, Z))) => min(add(Y, Z)) rm(X, nil) => nil rm(X, add(Y, Z)) => if!fac6220rm(eq(X, Y), X, add(Y, Z)) if!fac6220rm(true, X, add(Y, Z)) => rm(X, Z) if!fac6220rm(false, X, add(Y, Z)) => add(Y, rm(X, Z)) It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: minsort#(add(X, Y), Z) >? if!fac6220minsort#(eq(X, min(add(X, Y))), add(X, Y), Z) if!fac6220minsort#(true, add(X, Y), Z) >? minsort#(app(rm(X, Y), Z), nil) if!fac6220minsort#(false, add(X, Y), Z) >? minsort#(Y, add(X, Z)) eq(0, 0) >= true eq(0, s(X)) >= false eq(s(X), 0) >= false eq(s(X), s(Y)) >= eq(X, Y) le(0, X) >= true le(s(X), 0) >= false le(s(X), s(Y)) >= le(X, Y) app(nil, X) >= X app(add(X, Y), Z) >= add(X, app(Y, Z)) min(add(X, nil)) >= X min(add(X, add(Y, Z))) >= if!fac6220min(le(X, Y), add(X, add(Y, Z))) if!fac6220min(true, add(X, add(Y, Z))) >= min(add(X, Z)) if!fac6220min(false, add(X, add(Y, Z))) >= min(add(Y, Z)) rm(X, nil) >= nil rm(X, add(Y, Z)) >= if!fac6220rm(eq(X, Y), X, add(Y, Z)) if!fac6220rm(true, X, add(Y, Z)) >= rm(X, Z) if!fac6220rm(false, X, add(Y, Z)) >= add(Y, rm(X, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 3 add = \y0y1.2 + y0 + y1 app = \y0y1.y0 + y1 eq = \y0y1.0 false = 0 if!fac6220min = \y0y1.2y1 if!fac6220minsort# = \y0y1y2.2y1 + 2y2 if!fac6220rm = \y0y1y2.y2 le = \y0y1.2 min = \y0.2y0 minsort# = \y0y1.2y0 + 2y1 nil = 0 rm = \y0y1.y1 s = \y0.3 true = 0 Using this interpretation, the requirements translate to: [[minsort#(add(_x0, _x1), _x2)]] = 4 + 2x0 + 2x1 + 2x2 >= 4 + 2x0 + 2x1 + 2x2 = [[if!fac6220minsort#(eq(_x0, min(add(_x0, _x1))), add(_x0, _x1), _x2)]] [[if!fac6220minsort#(true, add(_x0, _x1), _x2)]] = 4 + 2x0 + 2x1 + 2x2 > 2x1 + 2x2 = [[minsort#(app(rm(_x0, _x1), _x2), nil)]] [[if!fac6220minsort#(false, add(_x0, _x1), _x2)]] = 4 + 2x0 + 2x1 + 2x2 >= 4 + 2x0 + 2x1 + 2x2 = [[minsort#(_x1, add(_x0, _x2))]] [[eq(0, 0)]] = 0 >= 0 = [[true]] [[eq(0, s(_x0))]] = 0 >= 0 = [[false]] [[eq(s(_x0), 0)]] = 0 >= 0 = [[false]] [[eq(s(_x0), s(_x1))]] = 0 >= 0 = [[eq(_x0, _x1)]] [[le(0, _x0)]] = 2 >= 0 = [[true]] [[le(s(_x0), 0)]] = 2 >= 0 = [[false]] [[le(s(_x0), s(_x1))]] = 2 >= 2 = [[le(_x0, _x1)]] [[app(nil, _x0)]] = x0 >= x0 = [[_x0]] [[app(add(_x0, _x1), _x2)]] = 2 + x0 + x1 + x2 >= 2 + x0 + x1 + x2 = [[add(_x0, app(_x1, _x2))]] [[min(add(_x0, nil))]] = 4 + 2x0 >= x0 = [[_x0]] [[min(add(_x0, add(_x1, _x2)))]] = 8 + 2x0 + 2x1 + 2x2 >= 8 + 2x0 + 2x1 + 2x2 = [[if!fac6220min(le(_x0, _x1), add(_x0, add(_x1, _x2)))]] [[if!fac6220min(true, add(_x0, add(_x1, _x2)))]] = 8 + 2x0 + 2x1 + 2x2 >= 4 + 2x0 + 2x2 = [[min(add(_x0, _x2))]] [[if!fac6220min(false, add(_x0, add(_x1, _x2)))]] = 8 + 2x0 + 2x1 + 2x2 >= 4 + 2x1 + 2x2 = [[min(add(_x1, _x2))]] [[rm(_x0, nil)]] = 0 >= 0 = [[nil]] [[rm(_x0, add(_x1, _x2))]] = 2 + x1 + x2 >= 2 + x1 + x2 = [[if!fac6220rm(eq(_x0, _x1), _x0, add(_x1, _x2))]] [[if!fac6220rm(true, _x0, add(_x1, _x2))]] = 2 + x1 + x2 >= x2 = [[rm(_x0, _x2)]] [[if!fac6220rm(false, _x0, add(_x1, _x2))]] = 2 + x1 + x2 >= 2 + x1 + x2 = [[add(_x1, rm(_x0, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_6, R_0, computable, formative) by (P_10, R_0, computable, formative), where P_10 consists of: minsort#(add(X, Y), Z) =#> if!fac6220minsort#(eq(X, min(add(X, Y))), add(X, Y), Z) if!fac6220minsort#(false, add(X, Y), Z) =#> minsort#(Y, add(X, Z)) Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative), (P_4, R_0, computable, formative), (P_5, R_0, computable, formative) and (P_10, R_0, computable, formative) is finite. We consider the dependency pair problem (P_10, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(if!fac6220minsort#) = 2 nu(minsort#) = 1 Thus, we can orient the dependency pairs as follows: nu(minsort#(add(X, Y), Z)) = add(X, Y) = add(X, Y) = nu(if!fac6220minsort#(eq(X, min(add(X, Y))), add(X, Y), Z)) nu(if!fac6220minsort#(false, add(X, Y), Z)) = add(X, Y) |> Y = nu(minsort#(Y, add(X, Z))) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_10, R_0, computable, f) by (P_11, R_0, computable, f), where P_11 contains: minsort#(add(X, Y), Z) =#> if!fac6220minsort#(eq(X, min(add(X, Y))), add(X, Y), Z) Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative), (P_4, R_0, computable, formative), (P_5, R_0, computable, formative) and (P_11, R_0, computable, formative) is finite. We consider the dependency pair problem (P_11, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative), (P_4, R_0, computable, formative) and (P_5, R_0, computable, formative) is finite. We consider the dependency pair problem (P_5, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(if!fac6220rm#) = 3 nu(rm#) = 2 Thus, we can orient the dependency pairs as follows: nu(rm#(X, add(Y, Z))) = add(Y, Z) = add(Y, Z) = nu(if!fac6220rm#(eq(X, Y), X, add(Y, Z))) nu(if!fac6220rm#(true, X, add(Y, Z))) = add(Y, Z) |> Z = nu(rm#(X, Z)) nu(if!fac6220rm#(false, X, add(Y, Z))) = add(Y, Z) |> Z = nu(rm#(X, Z)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_5, R_0, computable, f) by (P_12, R_0, computable, f), where P_12 contains: rm#(X, add(Y, Z)) =#> if!fac6220rm#(eq(X, Y), X, add(Y, Z)) Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative), (P_4, R_0, computable, formative) and (P_12, R_0, computable, formative) is finite. We consider the dependency pair problem (P_12, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative) and (P_4, R_0, computable, formative) is finite. We consider the dependency pair problem (P_4, R_0, computable, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_4, R_0) are: le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: min#(add(X, add(Y, Z))) >? if!fac6220min#(le(X, Y), add(X, add(Y, Z))) if!fac6220min#(true, add(X, add(Y, Z))) >? min#(add(X, Z)) if!fac6220min#(false, add(X, add(Y, Z))) >? min#(add(Y, Z)) le(0, X) >= true le(s(X), 0) >= false le(s(X), s(Y)) >= le(X, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 3 add = \y0y1.2 + 3y0 + 3y1 false = 0 if!fac6220min# = \y0y1.y1 le = \y0y1.y1 + 2y0 min# = \y0.1 + y0 s = \y0.3 + 2y0 true = 0 Using this interpretation, the requirements translate to: [[min#(add(_x0, add(_x1, _x2)))]] = 9 + 3x0 + 9x1 + 9x2 > 8 + 3x0 + 9x1 + 9x2 = [[if!fac6220min#(le(_x0, _x1), add(_x0, add(_x1, _x2)))]] [[if!fac6220min#(true, add(_x0, add(_x1, _x2)))]] = 8 + 3x0 + 9x1 + 9x2 > 3 + 3x0 + 3x2 = [[min#(add(_x0, _x2))]] [[if!fac6220min#(false, add(_x0, add(_x1, _x2)))]] = 8 + 3x0 + 9x1 + 9x2 > 3 + 3x1 + 3x2 = [[min#(add(_x1, _x2))]] [[le(0, _x0)]] = 6 + x0 >= 0 = [[true]] [[le(s(_x0), 0)]] = 9 + 4x0 >= 0 = [[false]] [[le(s(_x0), s(_x1))]] = 9 + 2x1 + 4x0 >= x1 + 2x0 = [[le(_x0, _x1)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_4, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(app#) = 1 Thus, we can orient the dependency pairs as follows: nu(app#(add(X, Y), Z)) = add(X, Y) |> Y = nu(app#(Y, Z)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_3, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(le#) = 1 Thus, we can orient the dependency pairs as follows: nu(le#(s(X), s(Y))) = s(X) |> X = nu(le#(X, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(eq#) = 1 Thus, we can orient the dependency pairs as follows: nu(eq#(s(X), s(Y))) = s(X) |> X = nu(eq#(X, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.