We consider the system Applicative_first_order_05__#3.52. Alphabet: 0 : [] --> a 1 : [] --> a cons : [c * d] --> d f : [a * a * a] --> a false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d map : [c -> c * d] --> d nil : [] --> d s : [a] --> a true : [] --> b Rules: f(0, 1, x) => f(s(x), x, x) f(x, y, s(z)) => s(f(0, 1, z)) map(g, nil) => nil map(g, cons(x, y)) => cons(g x, map(g, y)) filter(g, nil) => nil filter(g, cons(x, y)) => filter2(g x, g, x, y) filter2(true, g, x, y) => cons(x, filter(g, y)) filter2(false, g, x, y) => filter(g, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] f#(0, 1, X) =#> f#(s(X), X, X) 1] f#(X, Y, s(Z)) =#> f#(0, 1, Z) 2] map#(F, cons(X, Y)) =#> map#(F, Y) 3] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 4] filter2#(true, F, X, Y) =#> filter#(F, Y) 5] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: f(0, 1, X) => f(s(X), X, X) f(X, Y, s(Z)) => s(f(0, 1, Z)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 1 * 1 : 0, 1 * 2 : 2 * 3 : 4, 5 * 4 : 3 * 5 : 3 This graph has the following strongly connected components: P_1: f#(0, 1, X) =#> f#(s(X), X, X) f#(X, Y, s(Z)) =#> f#(0, 1, Z) P_2: map#(F, cons(X, Y)) =#> map#(F, Y) P_3: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f) and (P_3, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_3, R_0, computable, f) by (P_4, R_0, computable, f), where P_4 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative) and (P_4, R_0, computable, formative) is finite. We consider the dependency pair problem (P_4, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(f#) = 3 Thus, we can orient the dependency pairs as follows: nu(f#(0, 1, X)) = X = X = nu(f#(s(X), X, X)) nu(f#(X, Y, s(Z))) = s(Z) |> Z = nu(f#(0, 1, Z)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by (P_5, R_0, computable, f), where P_5 contains: f#(0, 1, X) =#> f#(s(X), X, X) Thus, the original system is terminating if (P_5, R_0, computable, formative) is finite. We consider the dependency pair problem (P_5, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.