We consider the system h51. Alphabet: cons : [] --> a -> alist -> alist foldl : [] --> (a -> a -> a) -> a -> alist -> a nil : [] --> alist Rules: foldl (/\x./\y.f x y) z nil => z foldl (/\x./\y.f x y) z (cons u v) => foldl (/\w./\x'.f w x') (f z u) v Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: Alphabet: cons : [a * alist] --> alist foldl : [a -> a -> a * a * alist] --> a nil : [] --> alist ~AP1 : [a -> a -> a * a] --> a -> a Rules: foldl(/\x./\y.~AP1(F, x) y, X, nil) => X foldl(/\x./\y.~AP1(F, x) y, X, cons(Y, Z)) => foldl(/\z./\u.~AP1(F, z) u, ~AP1(F, X) Y, Z) ~AP1(F, X) => F X Symbol ~AP1 is an encoding for application that is only used in innocuous ways. We can simplify the program (without losing non-termination) by removing it. This gives: Alphabet: cons : [a * alist] --> alist foldl : [a -> a -> a * a * alist] --> a nil : [] --> alist Rules: foldl(/\x./\y.X(x, y), Y, nil) => Y foldl(/\x./\y.X(x, y), Y, cons(Z, U)) => foldl(/\z./\u.X(z, u), X(Y, Z), U) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): foldl(/\x./\y.X(x, y), Y, nil) >? Y foldl(/\x./\y.X(x, y), Y, cons(Z, U)) >? foldl(/\z./\u.X(z, u), X(Y, Z), U) We use a recursive path ordering as defined in [Kop12, Chapter 5]. Argument functions: [[foldl(x_1, x_2, x_3)]] = foldl(x_3, x_1, x_2) We choose Lex = {foldl} and Mul = {cons, nil}, and the following precedence: nil > cons > foldl Taking the argument function into account, and fixing the greater / greater equal choices, the constraints can be denoted as follows: foldl(/\x./\y.X(x, y), Y, nil) > Y foldl(/\x./\y.X(x, y), Y, cons(Z, U)) > foldl(/\x./\y.X(x, y), X(Y, Z), U) With these choices, we have: 1] foldl(/\x./\y.X(x, y), Y, nil) > Y because [2], by definition 2] foldl*(/\x./\y.X(x, y), Y, nil) >= Y because [3], by (Select) 3] Y >= Y by (Meta) 4] foldl(/\x./\y.X(x, y), Y, cons(Z, U)) > foldl(/\x./\y.X(x, y), X(Y, Z), U) because [5], by definition 5] foldl*(/\x./\y.X(x, y), Y, cons(Z, U)) >= foldl(/\x./\y.X(x, y), X(Y, Z), U) because [6], [9], [15] and [23], by (Stat) 6] cons(Z, U) > U because [7], by definition 7] cons*(Z, U) >= U because [8], by (Select) 8] U >= U by (Meta) 9] foldl*(/\x./\y.X(x, y), Y, cons(Z, U)) >= /\x./\y.X(x, y) because [10], by (Select) 10] /\x./\z.X(x, z) >= /\x./\z.X(x, z) because [11], by (Abs) 11] /\z.X(y, z) >= /\z.X(y, z) because [12], by (Abs) 12] X(y, x) >= X(y, x) because [13] and [14], by (Meta) 13] y >= y by (Var) 14] x >= x by (Var) 15] foldl*(/\z./\u.X(z, u), Y, cons(Z, U)) >= X(Y, Z) because [16], by (Select) 16] X(foldl*(/\z./\u.X(z, u), Y, cons(Z, U)), foldl*(/\v./\w.X(v, w), Y, cons(Z, U))) >= X(Y, Z) because [17] and [19], by (Meta) 17] foldl*(/\z./\u.X(z, u), Y, cons(Z, U)) >= Y because [18], by (Select) 18] Y >= Y by (Meta) 19] foldl*(/\z./\u.X(z, u), Y, cons(Z, U)) >= Z because [20], by (Select) 20] cons(Z, U) >= Z because [21], by (Star) 21] cons*(Z, U) >= Z because [22], by (Select) 22] Z >= Z by (Meta) 23] foldl*(/\z./\u.X(z, u), Y, cons(Z, U)) >= U because [24], by (Select) 24] cons(Z, U) >= U because [7], by (Star) We can thus remove the following rules: foldl(/\x./\y.X(x, y), Y, nil) => Y foldl(/\x./\y.X(x, y), Y, cons(Z, U)) => foldl(/\z./\u.X(z, u), X(Y, Z), U) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.