We consider the system Applicative_05__BTreeMember. Alphabet: 0 : [] --> a eq : [a * a] --> c false : [] --> c fork : [b * a * b] --> b if : [c * c * c] --> c lt : [a * a] --> c member : [a * b] --> c null : [] --> b s : [a] --> a true : [] --> c Rules: lt(s(x), s(y)) => lt(x, y) lt(0, s(x)) => true lt(x, 0) => false eq(x, x) => true eq(s(x), 0) => false eq(0, s(x)) => false member(x, null) => false member(x, fork(y, z, u)) => if(lt(x, z), member(x, y), if(eq(x, z), true, member(x, u))) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): lt(s(X), s(Y)) >? lt(X, Y) lt(0, s(X)) >? true lt(X, 0) >? false eq(X, X) >? true eq(s(X), 0) >? false eq(0, s(X)) >? false member(X, null) >? false member(X, fork(Y, Z, U)) >? if(lt(X, Z), member(X, Y), if(eq(X, Z), true, member(X, U))) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 3 eq = \y0y1.y0 + y1 false = 0 fork = \y0y1y2.3 + 3y0 + 3y1 + 3y2 if = \y0y1y2.y0 + y1 + y2 lt = \y0y1.y0 + y1 member = \y0y1.y0 + 2y0y1 + 3y1 null = 3 s = \y0.3 + 3y0 true = 0 Using this interpretation, the requirements translate to: [[lt(s(_x0), s(_x1))]] = 6 + 3x0 + 3x1 > x0 + x1 = [[lt(_x0, _x1)]] [[lt(0, s(_x0))]] = 6 + 3x0 > 0 = [[true]] [[lt(_x0, 0)]] = 3 + x0 > 0 = [[false]] [[eq(_x0, _x0)]] = 2x0 >= 0 = [[true]] [[eq(s(_x0), 0)]] = 6 + 3x0 > 0 = [[false]] [[eq(0, s(_x0))]] = 6 + 3x0 > 0 = [[false]] [[member(_x0, null)]] = 9 + 7x0 > 0 = [[false]] [[member(_x0, fork(_x1, _x2, _x3))]] = 9 + 6x0x1 + 6x0x2 + 6x0x3 + 7x0 + 9x1 + 9x2 + 9x3 > 2x0x1 + 2x0x3 + 2x2 + 3x1 + 3x3 + 4x0 = [[if(lt(_x0, _x2), member(_x0, _x1), if(eq(_x0, _x2), true, member(_x0, _x3)))]] We can thus remove the following rules: lt(s(X), s(Y)) => lt(X, Y) lt(0, s(X)) => true lt(X, 0) => false eq(s(X), 0) => false eq(0, s(X)) => false member(X, null) => false member(X, fork(Y, Z, U)) => if(lt(X, Z), member(X, Y), if(eq(X, Z), true, member(X, U))) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): eq(X, X) >? true We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: eq = \y0y1.3 + y0 + y1 true = 0 Using this interpretation, the requirements translate to: [[eq(_x0, _x0)]] = 3 + 2x0 > 0 = [[true]] We can thus remove the following rules: eq(X, X) => true All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.