We consider the system Applicative_first_order_05__18. Alphabet: !facplus : [b * b] --> b !factimes : [a * b] --> b cons : [d * e] --> e false : [] --> c filter : [d -> c * e] --> e filter2 : [c * d -> c * d * e] --> e map : [d -> d * e] --> e nil : [] --> e true : [] --> c Rules: !factimes(x, !facplus(y, z)) => !facplus(!factimes(x, y), !factimes(x, z)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): !factimes(X, !facplus(Y, Z)) >? !facplus(!factimes(X, Y), !factimes(X, Z)) map(F, nil) >? nil map(F, cons(X, Y)) >? cons(F X, map(F, Y)) filter(F, nil) >? nil filter(F, cons(X, Y)) >? filter2(F X, F, X, Y) filter2(true, F, X, Y) >? cons(X, filter(F, Y)) filter2(false, F, X, Y) >? filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !facplus = \y0y1.1 + y0 + y1 !factimes = \y0y1.y0 + y1 + y0y1 cons = \y0y1.1 + y0 + y1 false = 3 filter = \G0y1.2 + 3y1 + G0(0) + 2y1G0(y1) filter2 = \y0G1y2y3.y2 + 2y0 + 3y3 + G1(0) + 2y3G1(y3) map = \G0y1.2y1 + G0(0) + 3y1G0(y1) nil = 0 true = 3 Using this interpretation, the requirements translate to: [[!factimes(_x0, !facplus(_x1, _x2))]] = 1 + x1 + x2 + 2x0 + x0x1 + x0x2 >= 1 + x1 + x2 + 2x0 + x0x1 + x0x2 = [[!facplus(!factimes(_x0, _x1), !factimes(_x0, _x2))]] [[map(_F0, nil)]] = F0(0) >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 2 + 2x1 + 2x2 + F0(0) + 3x1F0(1 + x1 + x2) + 3x2F0(1 + x1 + x2) + 3F0(1 + x1 + x2) > 1 + x1 + 2x2 + F0(0) + F0(x1) + 3x2F0(x2) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, nil)]] = 2 + F0(0) > 0 = [[nil]] [[filter(_F0, cons(_x1, _x2))]] = 5 + 3x1 + 3x2 + F0(0) + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(1 + x1 + x2) > 3x1 + 3x2 + F0(0) + 2x2F0(x2) + 2F0(x1) = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 6 + x1 + 3x2 + F0(0) + 2x2F0(x2) > 3 + x1 + 3x2 + F0(0) + 2x2F0(x2) = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 6 + x1 + 3x2 + F0(0) + 2x2F0(x2) > 2 + 3x2 + F0(0) + 2x2F0(x2) = [[filter(_F0, _x2)]] We can thus remove the following rules: map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): !factimes(X, !facplus(Y, Z)) >? !facplus(!factimes(X, Y), !factimes(X, Z)) map(F, nil) >? nil We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !facplus = \y0y1.1 + y0 + y1 !factimes = \y0y1.y0 + y1 + y0y1 map = \G0y1.3 + 3y1 + G0(0) nil = 0 Using this interpretation, the requirements translate to: [[!factimes(_x0, !facplus(_x1, _x2))]] = 1 + x1 + x2 + 2x0 + x0x1 + x0x2 >= 1 + x1 + x2 + 2x0 + x0x1 + x0x2 = [[!facplus(!factimes(_x0, _x1), !factimes(_x0, _x2))]] [[map(_F0, nil)]] = 3 + F0(0) > 0 = [[nil]] We can thus remove the following rules: map(F, nil) => nil We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): !factimes(X, !facplus(Y, Z)) >? !facplus(!factimes(X, Y), !factimes(X, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !facplus = \y0y1.2 + y0 + y1 !factimes = \y0y1.y0 + 3y1 + y0y1 Using this interpretation, the requirements translate to: [[!factimes(_x0, !facplus(_x1, _x2))]] = 6 + 3x0 + 3x1 + 3x2 + x0x1 + x0x2 > 2 + 2x0 + 3x1 + 3x2 + x0x1 + x0x2 = [[!facplus(!factimes(_x0, _x1), !factimes(_x0, _x2))]] We can thus remove the following rules: !factimes(X, !facplus(Y, Z)) => !facplus(!factimes(X, Y), !factimes(X, Z)) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.