We consider the system Applicative_first_order_05__#3.16. Alphabet: 0 : [] --> a cons : [c * d] --> d false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d map : [c -> c * d] --> d nil : [] --> d plus : [a * a] --> a s : [a] --> a times : [a * a] --> a true : [] --> b Rules: times(x, 0) => 0 times(x, s(y)) => plus(times(x, y), x) plus(x, 0) => x plus(0, x) => x plus(x, s(y)) => s(plus(x, y)) plus(s(x), y) => s(plus(x, y)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): times(X, 0) >? 0 times(X, s(Y)) >? plus(times(X, Y), X) plus(X, 0) >? X plus(0, X) >? X plus(X, s(Y)) >? s(plus(X, Y)) plus(s(X), Y) >? s(plus(X, Y)) map(F, nil) >? nil map(F, cons(X, Y)) >? cons(F X, map(F, Y)) filter(F, nil) >? nil filter(F, cons(X, Y)) >? filter2(F X, F, X, Y) filter2(true, F, X, Y) >? cons(X, filter(F, Y)) filter2(false, F, X, Y) >? filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 cons = \y0y1.2 + y1 + 2y0 false = 3 filter = \G0y1.1 + 3y1 + G0(y1) + 2y1G0(y1) filter2 = \y0G1y2y3.2y0 + 2y2 + 3y3 + G1(y3) + 2y3G1(y3) map = \G0y1.2y1 + G0(y1) + y1G0(y1) nil = 0 plus = \y0y1.y0 + y1 s = \y0.1 + y0 times = \y0y1.2y0 + 2y1 + y0y1 true = 3 Using this interpretation, the requirements translate to: [[times(_x0, 0)]] = 2x0 >= 0 = [[0]] [[times(_x0, s(_x1))]] = 2 + 2x1 + 3x0 + x0x1 > 2x1 + 3x0 + x0x1 = [[plus(times(_x0, _x1), _x0)]] [[plus(_x0, 0)]] = x0 >= x0 = [[_x0]] [[plus(0, _x0)]] = x0 >= x0 = [[_x0]] [[plus(_x0, s(_x1))]] = 1 + x0 + x1 >= 1 + x0 + x1 = [[s(plus(_x0, _x1))]] [[plus(s(_x0), _x1)]] = 1 + x0 + x1 >= 1 + x0 + x1 = [[s(plus(_x0, _x1))]] [[map(_F0, nil)]] = F0(0) >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 4 + 2x2 + 4x1 + 2x1F0(2 + x2 + 2x1) + 3F0(2 + x2 + 2x1) + x2F0(2 + x2 + 2x1) > 2 + 2x1 + 2x2 + F0(x2) + 2F0(x1) + x2F0(x2) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, nil)]] = 1 + F0(0) > 0 = [[nil]] [[filter(_F0, cons(_x1, _x2))]] = 7 + 3x2 + 6x1 + 2x2F0(2 + x2 + 2x1) + 4x1F0(2 + x2 + 2x1) + 5F0(2 + x2 + 2x1) > 3x2 + 4x1 + F0(x2) + 2x2F0(x2) + 2F0(x1) = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 6 + 2x1 + 3x2 + F0(x2) + 2x2F0(x2) > 3 + 2x1 + 3x2 + F0(x2) + 2x2F0(x2) = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 6 + 2x1 + 3x2 + F0(x2) + 2x2F0(x2) > 1 + 3x2 + F0(x2) + 2x2F0(x2) = [[filter(_F0, _x2)]] We can thus remove the following rules: times(X, s(Y)) => plus(times(X, Y), X) map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): times(X, 0) >? 0 plus(X, 0) >? X plus(0, X) >? X plus(X, s(Y)) >? s(plus(X, Y)) plus(s(X), Y) >? s(plus(X, Y)) map(F, nil) >? nil We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 map = \G0y1.3 + 3y1 + G0(0) nil = 0 plus = \y0y1.3 + 3y0 + 3y1 s = \y0.y0 times = \y0y1.3 + y0 + 3y1 Using this interpretation, the requirements translate to: [[times(_x0, 0)]] = 3 + x0 > 0 = [[0]] [[plus(_x0, 0)]] = 3 + 3x0 > x0 = [[_x0]] [[plus(0, _x0)]] = 3 + 3x0 > x0 = [[_x0]] [[plus(_x0, s(_x1))]] = 3 + 3x0 + 3x1 >= 3 + 3x0 + 3x1 = [[s(plus(_x0, _x1))]] [[plus(s(_x0), _x1)]] = 3 + 3x0 + 3x1 >= 3 + 3x0 + 3x1 = [[s(plus(_x0, _x1))]] [[map(_F0, nil)]] = 3 + F0(0) > 0 = [[nil]] We can thus remove the following rules: times(X, 0) => 0 plus(X, 0) => X plus(0, X) => X map(F, nil) => nil We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): plus(X, s(Y)) >? s(plus(X, Y)) plus(s(X), Y) >? s(plus(X, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: plus = \y0y1.3y0 + 3y1 s = \y0.2 + y0 Using this interpretation, the requirements translate to: [[plus(_x0, s(_x1))]] = 6 + 3x0 + 3x1 > 2 + 3x0 + 3x1 = [[s(plus(_x0, _x1))]] [[plus(s(_x0), _x1)]] = 6 + 3x0 + 3x1 > 2 + 3x0 + 3x1 = [[s(plus(_x0, _x1))]] We can thus remove the following rules: plus(X, s(Y)) => s(plus(X, Y)) plus(s(X), Y) => s(plus(X, Y)) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.