We consider the system Applicative_05__TreeFlatten. Alphabet: append : [a * a] --> a concat : [a] --> a cons : [a * a] --> a flatten : [] --> a -> a map : [a -> a * a] --> a nil : [] --> a node : [a * a] --> a Rules: map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) flatten node(x, y) => cons(x, concat(map(flatten, y))) concat(nil) => nil concat(cons(x, y)) => append(x, concat(y)) append(nil, x) => x append(cons(x, y), z) => cons(x, append(y, z)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: concat(nil) => nil concat(cons(X, Y)) => append(X, concat(Y)) append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) QTRSRRRProof [EQUIVALENT] || (4) QTRS || (5) RisEmptyProof [EQUIVALENT] || (6) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || concat(nil) -> nil || concat(cons(%X, %Y)) -> append(%X, concat(%Y)) || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(append(x_1, x_2)) = 2 + 2*x_1 + x_2 || POL(concat(x_1)) = 2 + 2*x_1 || POL(cons(x_1, x_2)) = 1 + x_1 + x_2 || POL(nil) = 1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || concat(nil) -> nil || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || concat(cons(%X, %Y)) -> append(%X, concat(%Y)) || || Q is empty. || || ---------------------------------------- || || (3) QTRSRRRProof (EQUIVALENT) || Used ordering: || Knuth-Bendix order [KBO] with precedence:concat_1 > append_2 > cons_2 || || and weight map: || || concat_1=1 || cons_2=0 || append_2=0 || || The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || concat(cons(%X, %Y)) -> append(%X, concat(%Y)) || || || || || ---------------------------------------- || || (4) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (5) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (6) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) 2] flatten node(X, Y) =#> concat#(map(flatten, Y)) 3] flatten node(X, Y) =#> map#(flatten, Y) 4] flatten node(X, Y) =#> flatten# Rules R_0: map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) flatten node(X, Y) => cons(X, concat(map(flatten, Y))) concat(nil) => nil concat(cons(X, Y)) => append(X, concat(Y)) append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 2, 3, 4 * 1 : 0, 1 * 2 : * 3 : 0, 1 * 4 : This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> F(X) map#(F, cons(X, Y)) =#> map#(F, Y) flatten node(X, Y) =#> map#(flatten, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) flatten node(X, Y) >? map#(flatten, Y) map(F, nil) >= nil map(F, cons(X, Y)) >= cons(F X, map(F, Y)) flatten node(X, Y) >= cons(X, concat(map(flatten, Y))) concat(nil) >= nil concat(cons(X, Y)) >= append(X, concat(Y)) append(nil, X) >= X append(cons(X, Y), Z) >= cons(X, append(Y, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: append = \y0y1.y0 + y1 concat = \y0.y0 cons = \y0y1.1 + y0 + y1 flatten = \y0.0 map = \G0y1.2 + 2y1 + G0(y1) + 3y1G0(y1) map# = \G0y1.y1 + 2y1G0(y1) nil = 0 node = \y0y1.3 + y0 + 2y1 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 1 + x1 + x2 + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(1 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 1 + x1 + x2 + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(1 + x1 + x2) > x2 + 2x2F0(x2) = [[map#(_F0, _x2)]] [[flatten node(_x0, _x1)]] = 3 + x0 + 2x1 > x1 = [[map#(flatten, _x1)]] [[map(_F0, nil)]] = 2 + F0(0) >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 4 + 2x1 + 2x2 + 3x1F0(1 + x1 + x2) + 3x2F0(1 + x1 + x2) + 4F0(1 + x1 + x2) >= 3 + 2x2 + F0(x2) + 3x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[flatten node(_x0, _x1)]] = 3 + x0 + 2x1 >= 3 + x0 + 2x1 = [[cons(_x0, concat(map(flatten, _x1)))]] [[concat(nil)]] = 0 >= 0 = [[nil]] [[concat(cons(_x0, _x1))]] = 1 + x0 + x1 >= x0 + x1 = [[append(_x0, concat(_x1))]] [[append(nil, _x0)]] = x0 >= x0 = [[_x0]] [[append(cons(_x0, _x1), _x2)]] = 1 + x0 + x1 + x2 >= 1 + x0 + x1 + x2 = [[cons(_x0, append(_x1, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_1, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.