We consider the system Applicative_05__TreeLevels. Alphabet: append : [a * a] --> a combine : [a * a] --> a cons : [a * a] --> a levels : [] --> a -> a map : [a -> a * a] --> a nil : [] --> a node : [a * a] --> a zip : [a * a] --> a Rules: map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) append(x, nil) => x append(nil, x) => x append(cons(x, y), z) => cons(x, append(y, z)) zip(nil, x) => x zip(x, nil) => x zip(cons(x, y), cons(z, u)) => cons(append(x, z), zip(y, u)) combine(x, nil) => x combine(x, cons(y, z)) => combine(zip(x, y), z) levels node(x, y) => cons(cons(x, nil), combine(nil, map(levels, y))) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: append(X, nil) => X append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) zip(nil, X) => X zip(X, nil) => X zip(cons(X, Y), cons(Z, U)) => cons(append(X, Z), zip(Y, U)) combine(X, nil) => X combine(X, cons(Y, Z)) => combine(zip(X, Y), Z) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || append(%X, nil) -> %X || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || zip(nil, %X) -> %X || zip(%X, nil) -> %X || zip(cons(%X, %Y), cons(%Z, %U)) -> cons(append(%X, %Z), zip(%Y, %U)) || combine(%X, nil) -> %X || combine(%X, cons(%Y, %Z)) -> combine(zip(%X, %Y), %Z) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Knuth-Bendix order [KBO] with precedence:~PAIR_2 > combine_2 > zip_2 > append_2 > cons_2 > nil || || and weight map: || || nil=1 || append_2=1 || cons_2=1 || zip_2=0 || combine_2=0 || ~PAIR_2=0 || || The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || append(%X, nil) -> %X || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || zip(nil, %X) -> %X || zip(%X, nil) -> %X || zip(cons(%X, %Y), cons(%Z, %U)) -> cons(append(%X, %Z), zip(%Y, %U)) || combine(%X, nil) -> %X || combine(%X, cons(%Y, %Z)) -> combine(zip(%X, %Y), %Z) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) 2] levels node(X, Y) =#> combine#(nil, map(levels, Y)) 3] levels node(X, Y) =#> map#(levels, Y) 4] levels node(X, Y) =#> levels# Rules R_0: map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) append(X, nil) => X append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) zip(nil, X) => X zip(X, nil) => X zip(cons(X, Y), cons(Z, U)) => cons(append(X, Z), zip(Y, U)) combine(X, nil) => X combine(X, cons(Y, Z)) => combine(zip(X, Y), Z) levels node(X, Y) => cons(cons(X, nil), combine(nil, map(levels, Y))) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 2, 3, 4 * 1 : 0, 1 * 2 : * 3 : 0, 1 * 4 : This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> F(X) map#(F, cons(X, Y)) =#> map#(F, Y) levels node(X, Y) =#> map#(levels, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) levels node(X, Y) >? map#(levels, Y) map(F, nil) >= nil map(F, cons(X, Y)) >= cons(F X, map(F, Y)) append(X, nil) >= X append(nil, X) >= X append(cons(X, Y), Z) >= cons(X, append(Y, Z)) zip(nil, X) >= X zip(X, nil) >= X zip(cons(X, Y), cons(Z, U)) >= cons(append(X, Z), zip(Y, U)) combine(X, nil) >= X combine(X, cons(Y, Z)) >= combine(zip(X, Y), Z) levels node(X, Y) >= cons(cons(X, nil), combine(nil, map(levels, Y))) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: append = \y0y1.y0 + y1 combine = \y0y1.y0 + y1 cons = \y0y1.1 + y0 + y1 levels = \y0.0 map = \G0y1.1 + y1 + G0(y1) + y1G0(y1) map# = \G0y1.2 + y1G0(y1) nil = 0 node = \y0y1.3 + y0 + y1 zip = \y0y1.y0 + y1 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 2 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 2 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) >= 2 + x2F0(x2) = [[map#(_F0, _x2)]] [[levels node(_x0, _x1)]] = 3 + x0 + x1 > 2 = [[map#(levels, _x1)]] [[map(_F0, nil)]] = 1 + F0(0) >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 2 + x1 + x2 + 2F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) >= 2 + x2 + F0(x2) + x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[append(_x0, nil)]] = x0 >= x0 = [[_x0]] [[append(nil, _x0)]] = x0 >= x0 = [[_x0]] [[append(cons(_x0, _x1), _x2)]] = 1 + x0 + x1 + x2 >= 1 + x0 + x1 + x2 = [[cons(_x0, append(_x1, _x2))]] [[zip(nil, _x0)]] = x0 >= x0 = [[_x0]] [[zip(_x0, nil)]] = x0 >= x0 = [[_x0]] [[zip(cons(_x0, _x1), cons(_x2, _x3))]] = 2 + x0 + x1 + x2 + x3 >= 1 + x0 + x1 + x2 + x3 = [[cons(append(_x0, _x2), zip(_x1, _x3))]] [[combine(_x0, nil)]] = x0 >= x0 = [[_x0]] [[combine(_x0, cons(_x1, _x2))]] = 1 + x0 + x1 + x2 >= x0 + x1 + x2 = [[combine(zip(_x0, _x1), _x2)]] [[levels node(_x0, _x1)]] = 3 + x0 + x1 >= 3 + x0 + x1 = [[cons(cons(_x0, nil), combine(nil, map(levels, _x1)))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_2, R_0, minimal, formative), where P_2 consists of: map#(F, cons(X, Y)) =#> map#(F, Y) Thus, the original system is terminating if (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.