We consider the system Applicative_first_order_05__#3.45. Alphabet: 0 : [] --> d cons : [d * d] --> d f : [d] --> a false : [] --> c filter : [d -> c * d] --> d filter2 : [c * d -> c * d * d] --> d g : [d] --> d h : [d] --> b map : [d -> d * d] --> d nil : [] --> d s : [d] --> d true : [] --> c Rules: f(s(x)) => f(x) g(cons(0, x)) => g(x) g(cons(s(x), y)) => s(x) h(cons(x, y)) => h(g(cons(x, y))) map(i, nil) => nil map(i, cons(x, y)) => cons(i x, map(i, y)) filter(i, nil) => nil filter(i, cons(x, y)) => filter2(i x, i, x, y) filter2(true, i, x, y) => cons(x, filter(i, y)) filter2(false, i, x, y) => filter(i, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: f(s(X)) => f(X) g(cons(0, X)) => g(X) g(cons(s(X), Y)) => s(X) h(cons(X, Y)) => h(g(cons(X, Y))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) QTRSRRRProof [EQUIVALENT] || (4) QTRS || (5) AAECC Innermost [EQUIVALENT] || (6) QTRS || (7) DependencyPairsProof [EQUIVALENT] || (8) QDP || (9) DependencyGraphProof [EQUIVALENT] || (10) TRUE || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || f(s(%X)) -> f(%X) || g(cons(0, %X)) -> g(%X) || g(cons(s(%X), %Y)) -> s(%X) || h(cons(%X, %Y)) -> h(g(cons(%X, %Y))) || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(0) = 1 || POL(cons(x_1, x_2)) = x_1 + 2*x_2 || POL(f(x_1)) = x_1 || POL(g(x_1)) = x_1 || POL(h(x_1)) = 2*x_1 || POL(s(x_1)) = 2*x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || g(cons(0, %X)) -> g(%X) || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || f(s(%X)) -> f(%X) || g(cons(s(%X), %Y)) -> s(%X) || h(cons(%X, %Y)) -> h(g(cons(%X, %Y))) || || Q is empty. || || ---------------------------------------- || || (3) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(cons(x_1, x_2)) = 2*x_1 + x_2 || POL(f(x_1)) = x_1 || POL(g(x_1)) = x_1 || POL(h(x_1)) = x_1 || POL(s(x_1)) = 1 + x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || f(s(%X)) -> f(%X) || g(cons(s(%X), %Y)) -> s(%X) || || || || || ---------------------------------------- || || (4) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || h(cons(%X, %Y)) -> h(g(cons(%X, %Y))) || || Q is empty. || || ---------------------------------------- || || (5) AAECC Innermost (EQUIVALENT) || We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is none || || The TRS R 2 is || h(cons(%X, %Y)) -> h(g(cons(%X, %Y))) || || The signature Sigma is {h_1} || ---------------------------------------- || || (6) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || h(cons(%X, %Y)) -> h(g(cons(%X, %Y))) || || The set Q consists of the following terms: || || h(cons(x0, x1)) || || || ---------------------------------------- || || (7) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (8) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || H(cons(%X, %Y)) -> H(g(cons(%X, %Y))) || || The TRS R consists of the following rules: || || h(cons(%X, %Y)) -> h(g(cons(%X, %Y))) || || The set Q consists of the following terms: || || h(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (9) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. || ---------------------------------------- || || (10) || TRUE || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: f(s(X)) => f(X) g(cons(0, X)) => g(X) g(cons(s(X), Y)) => s(X) h(cons(X, Y)) => h(g(cons(X, Y))) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_3, R_0, computable, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.