We consider the system h60. Alphabet: 0 : [] --> nat rec : [nat * a * nat -> a -> a] --> a s : [nat] --> nat xap : [nat -> a -> a * nat] --> a -> a yap : [a -> a * a] --> a Rules: rec(0, x, /\y./\z.yap(xap(f, y), z)) => x rec(s(x), y, /\z./\u.yap(xap(f, z), u)) => yap(xap(f, x), rec(x, y, /\v./\w.yap(xap(f, v), w))) xap(f, x) => f x yap(f, x) => f x This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). Symbol xap is an encoding for application that is only used in innocuous ways. We can simplify the program (without losing non-termination) by removing it. This gives: Alphabet: 0 : [] --> nat rec : [nat * a * nat -> a -> a] --> a s : [nat] --> nat yap : [a -> a * a] --> a Rules: rec(0, X, /\x./\y.yap(F(x), y)) => X rec(s(X), Y, /\x./\y.yap(F(x), y)) => yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) => F X We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, all): Dependency Pairs P_0: 0] rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) 1] rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> F(X) 2] rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) 3] rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> yap#(F(z), u) 4] rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> F(z) 5] yap#(F, X) =#> F(X) Rules R_0: rec(0, X, /\x./\y.yap(F(x), y)) => X rec(s(X), Y, /\x./\y.yap(F(x), y)) => yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) => F X Thus, the original system is terminating if (P_0, R_0, minimal, all) is finite. We consider the dependency pair problem (P_0, R_0, minimal, all). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 5 * 1 : 0, 1, 2, 3, 4, 5 * 2 : 0, 1, 2, 3, 4 * 3 : * 4 : 0, 1, 2, 3, 4, 5 * 5 : 0, 1, 2, 3, 4, 5 This graph has the following strongly connected components: P_1: rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> F(X) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> F(z) yap#(F, X) =#> F(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, all) is finite. We consider the dependency pair problem (P_1, R_0, minimal, all). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? F(X) ~c0 rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? rec#(X, Y, /\z./\u.yap(F(z), u)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? F(~c2) ~c1 yap#(F, X) >? F(X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) >= F X rec(X, Y, F) >= rec#(X, Y, F) yap(F, X) >= yap#(F, X) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( yap#(F, X) ) = #argfun-yap##(F X) Since this representation is not advantageous for the higher-order recursive path ordering, we present the strict requirements in their unextended form, which is not problematic since for any F, s and substituion gamma: (F s)gamma beta-reduces to F(s)gamma.) We use a recursive path ordering as defined in [Kop12, Chapter 5]. Argument functions: [[~c0]] = _|_ [[~c1]] = _|_ [[~c2]] = _|_ We choose Lex = {} and Mul = {#argfun-yap##, 0, @_{o -> o}, rec, rec#, s, yap, yap#}, and the following precedence: s > yap > #argfun-yap## > rec = rec# > @_{o -> o} > yap# > 0 Taking the argument function into account, and fixing the greater / greater equal choices, the constraints can be denoted as follows: rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) > @_{o -> o}(F(X), _|_) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= rec#(X, Y, /\x./\y.yap(F(x), y)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(_|_), _|_) #argfun-yap##(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) yap(F, X) >= @_{o -> o}(F, X) rec(X, Y, F) >= rec#(X, Y, F) yap(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) With these choices, we have: 1] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [2], by (Star) 2] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [3], by (Select) 3] yap(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [4], by (Star) 4] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because yap > #argfun-yap## and [5], by (Copy) 5] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap > @_{o -> o}, [6] and [12], by (Copy) 6] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= F(X) because [7], by (Select) 7] F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [8], by (Meta) 8] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [9], by (Select) 9] s(X) >= X because [10], by (Star) 10] s*(X) >= X because [11], by (Select) 11] X >= X by (Meta) 12] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= rec(X, Y, /\x./\y.yap(F(x), y)) because [13], by (Select) 13] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec# = rec, rec# in Mul, [14], [16] and [17], by (Stat) 14] s(X) > X because [15], by definition 15] s*(X) >= X because [11], by (Select) 16] Y >= Y by (Meta) 17] /\x./\z.yap(F(x), z) >= /\x./\z.yap(F(x), z) because [18], by (Abs) 18] /\z.yap(F(y), z) >= /\z.yap(F(y), z) because [19], by (Abs) 19] yap(F(y), x) >= yap(F(y), x) because yap in Mul, [20] and [22], by (Fun) 20] F(y) >= F(y) because [21], by (Meta) 21] y >= y by (Var) 22] x >= x by (Var) 23] rec#(s(X), Y, /\x./\y.yap(F(x), y)) > @_{o -> o}(F(X), _|_) because [24], by definition 24] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(X), _|_) because [25], by (Select) 25] yap(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(X), _|_) because [26], by (Star) 26] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(X), _|_) because yap > @_{o -> o}, [6] and [27], by (Copy) 27] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= _|_ by (Bot) 28] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= rec#(X, Y, /\x./\y.yap(F(x), y)) because rec# in Mul, [29], [16] and [17], by (Fun) 29] s(X) >= X because [15], by (Star) 30] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(_|_), _|_) because [31], by (Star) 31] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(_|_), _|_) because rec# > @_{o -> o}, [32] and [36], by (Copy) 32] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= F(_|_) because [33], by (Select) 33] /\x.yap(F(rec#*(s(X), Y, /\y./\z.yap(F(y), z))), x) >= F(_|_) because [34], by (Eta)[Kop13:2] 34] F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(_|_) because [35], by (Meta) 35] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= _|_ by (Bot) 36] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= _|_ by (Bot) 37] #argfun-yap##(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [38], by (Star) 38] #argfun-yap##*(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [39], by (Select) 39] @_{o -> o}(F, X) >= @_{o -> o}(F, X) because @_{o -> o} in Mul, [40] and [41], by (Fun) 40] F >= F by (Meta) 41] X >= X by (Meta) 42] rec(0, X, /\x./\y.yap(F(x), y)) >= X because [43], by (Star) 43] rec*(0, X, /\x./\y.yap(F(x), y)) >= X because [44], by (Select) 44] X >= X by (Meta) 45] rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [46], by (Star) 46] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [47], by (Select) 47] yap(F(rec*(s(X), Y, /\x./\y.yap(F(x), y))), rec*(s(X), Y, /\z./\u.yap(F(z), u))) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap in Mul, [48] and [50], by (Fun) 48] F(rec*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [49], by (Meta) 49] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [29], by (Select) 50] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec in Mul, [14], [16] and [17], by (Stat) 51] yap(F, X) >= @_{o -> o}(F, X) because [52], by (Star) 52] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [53] and [54], by (Copy) 53] yap*(F, X) >= F because [40], by (Select) 54] yap*(F, X) >= X because [41], by (Select) 55] rec(X, Y, F) >= rec#(X, Y, F) because rec = rec#, rec in Mul, [56], [57] and [58], by (Fun) 56] X >= X by (Meta) 57] Y >= Y by (Meta) 58] F >= F by (Meta) 59] yap(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because [60], by (Star) 60] yap*(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because yap > #argfun-yap## and [61], by (Copy) 61] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [62] and [64], by (Copy) 62] yap*(F, X) >= F because [63], by (Select) 63] F >= F by (Meta) 64] yap*(F, X) >= X because [65], by (Select) 65] X >= X by (Meta) By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_0, minimal, all) by (P_2, R_0, minimal, all), where P_2 consists of: rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> F(z) yap#(F, X) =#> F(X) Thus, the original system is terminating if (P_2, R_0, minimal, all) is finite. We consider the dependency pair problem (P_2, R_0, minimal, all). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? rec#(X, Y, /\z./\u.yap(F(z), u)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? F(~c1) ~c0 yap#(F, X) >? F(X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) >= F X rec(X, Y, F) >= rec#(X, Y, F) yap(F, X) >= yap#(F, X) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( yap#(F, X) ) = #argfun-yap##(F X) Since this representation is not advantageous for the higher-order recursive path ordering, we present the strict requirements in their unextended form, which is not problematic since for any F, s and substituion gamma: (F s)gamma beta-reduces to F(s)gamma.) We use a recursive path ordering as defined in [Kop12, Chapter 5]. Argument functions: [[~c0]] = _|_ [[~c1]] = _|_ We choose Lex = {} and Mul = {#argfun-yap##, 0, @_{o -> o}, rec, rec#, s, yap, yap#}, and the following precedence: 0 > s > yap > @_{o -> o} > #argfun-yap## > rec = rec# > yap# Taking the argument function into account, and fixing the greater / greater equal choices, the constraints can be denoted as follows: rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= rec#(X, Y, /\x./\y.yap(F(x), y)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) > @_{o -> o}(F(_|_), _|_) #argfun-yap##(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) yap(F, X) >= @_{o -> o}(F, X) rec(X, Y, F) >= rec#(X, Y, F) yap(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) With these choices, we have: 1] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [2], by (Star) 2] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [3], by (Select) 3] yap(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [4], by (Star) 4] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because yap > #argfun-yap## and [5], by (Copy) 5] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap > @_{o -> o}, [6] and [12], by (Copy) 6] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= F(X) because [7], by (Select) 7] F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [8], by (Meta) 8] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [9], by (Select) 9] s(X) >= X because [10], by (Star) 10] s*(X) >= X because [11], by (Select) 11] X >= X by (Meta) 12] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= rec(X, Y, /\x./\y.yap(F(x), y)) because [13], by (Select) 13] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec# = rec, rec# in Mul, [14], [16] and [17], by (Stat) 14] s(X) > X because [15], by definition 15] s*(X) >= X because [11], by (Select) 16] Y >= Y by (Meta) 17] /\x./\z.yap(F(x), z) >= /\x./\z.yap(F(x), z) because [18], by (Abs) 18] /\z.yap(F(y), z) >= /\z.yap(F(y), z) because [19], by (Abs) 19] yap(F(y), x) >= yap(F(y), x) because yap in Mul, [20] and [22], by (Fun) 20] F(y) >= F(y) because [21], by (Meta) 21] y >= y by (Var) 22] x >= x by (Var) 23] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= rec#(X, Y, /\x./\y.yap(F(x), y)) because rec# in Mul, [24], [16] and [17], by (Fun) 24] s(X) >= X because [15], by (Star) 25] rec#(s(X), Y, /\x./\y.yap(F(x), y)) > @_{o -> o}(F(_|_), _|_) because [26], by definition 26] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(_|_), _|_) because [27], by (Select) 27] yap(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(_|_), _|_) because [28], by (Star) 28] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(_|_), _|_) because yap > @_{o -> o}, [29] and [32], by (Copy) 29] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= F(_|_) because [30], by (Select) 30] F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(_|_) because [31], by (Meta) 31] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= _|_ by (Bot) 32] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= _|_ by (Bot) 33] #argfun-yap##(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [34], by (Star) 34] #argfun-yap##*(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [35], by (Select) 35] @_{o -> o}(F, X) >= @_{o -> o}(F, X) because @_{o -> o} in Mul, [36] and [37], by (Fun) 36] F >= F by (Meta) 37] X >= X by (Meta) 38] rec(0, X, /\x./\y.yap(F(x), y)) >= X because [39], by (Star) 39] rec*(0, X, /\x./\y.yap(F(x), y)) >= X because [40], by (Select) 40] X >= X by (Meta) 41] rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [42], by (Star) 42] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [43], by (Select) 43] yap(F(rec*(s(X), Y, /\x./\y.yap(F(x), y))), rec*(s(X), Y, /\z./\u.yap(F(z), u))) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap in Mul, [44] and [46], by (Fun) 44] F(rec*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [45], by (Meta) 45] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [24], by (Select) 46] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec in Mul, [14], [16] and [17], by (Stat) 47] yap(F, X) >= @_{o -> o}(F, X) because [48], by (Star) 48] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [49] and [50], by (Copy) 49] yap*(F, X) >= F because [36], by (Select) 50] yap*(F, X) >= X because [37], by (Select) 51] rec(X, Y, F) >= rec#(X, Y, F) because rec = rec#, rec in Mul, [52], [53] and [54], by (Fun) 52] X >= X by (Meta) 53] Y >= Y by (Meta) 54] F >= F by (Meta) 55] yap(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because [56], by (Star) 56] yap*(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because yap > #argfun-yap## and [57], by (Copy) 57] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [58] and [60], by (Copy) 58] yap*(F, X) >= F because [59], by (Select) 59] F >= F by (Meta) 60] yap*(F, X) >= X because [61], by (Select) 61] X >= X by (Meta) By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_2, R_0, minimal, all) by (P_3, R_0, minimal, all), where P_3 consists of: rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) yap#(F, X) =#> F(X) Thus, the original system is terminating if (P_3, R_0, minimal, all) is finite. We consider the dependency pair problem (P_3, R_0, minimal, all). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? rec#(X, Y, /\z./\u.yap(F(z), u)) yap#(F, X) >? F(X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) >= F X rec(X, Y, F) >= rec#(X, Y, F) yap(F, X) >= yap#(F, X) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( yap#(F, X) ) = #argfun-yap##(F X) Since this representation is not advantageous for the higher-order recursive path ordering, we present the strict requirements in their unextended form, which is not problematic since for any F, s and substituion gamma: (F s)gamma beta-reduces to F(s)gamma.) We use a recursive path ordering as defined in [Kop12, Chapter 5]. We choose Lex = {} and Mul = {#argfun-yap##, 0, @_{o -> o}, rec, rec#, s, yap, yap#}, and the following precedence: 0 > s > rec = rec# > yap > #argfun-yap## > @_{o -> o} > yap# With these choices, we have: 1] rec#(s(X), Y, /\x./\y.yap(F(x), y)) > #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [2], by definition 2] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [3], by (Select) 3] yap(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [4], by (Star) 4] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because yap > #argfun-yap## and [5], by (Copy) 5] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap > @_{o -> o}, [6] and [12], by (Copy) 6] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= F(X) because [7], by (Select) 7] F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [8], by (Meta) 8] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [9], by (Select) 9] s(X) >= X because [10], by (Star) 10] s*(X) >= X because [11], by (Select) 11] X >= X by (Meta) 12] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= rec(X, Y, /\x./\y.yap(F(x), y)) because [13], by (Select) 13] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec# = rec, rec# in Mul, [14], [16] and [17], by (Stat) 14] s(X) > X because [15], by definition 15] s*(X) >= X because [11], by (Select) 16] Y >= Y by (Meta) 17] /\x./\z.yap(F(x), z) >= /\x./\z.yap(F(x), z) because [18], by (Abs) 18] /\z.yap(F(y), z) >= /\z.yap(F(y), z) because [19], by (Abs) 19] yap(F(y), x) >= yap(F(y), x) because yap in Mul, [20] and [22], by (Fun) 20] F(y) >= F(y) because [21], by (Meta) 21] y >= y by (Var) 22] x >= x by (Var) 23] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= rec#(X, Y, /\x./\y.yap(F(x), y)) because rec# in Mul, [24], [16] and [17], by (Fun) 24] s(X) >= X because [15], by (Star) 25] #argfun-yap##(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [26], by (Star) 26] #argfun-yap##*(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [27], by (Select) 27] @_{o -> o}(F, X) >= @_{o -> o}(F, X) because @_{o -> o} in Mul, [28] and [29], by (Fun) 28] F >= F by (Meta) 29] X >= X by (Meta) 30] rec(0, X, /\x./\y.yap(F(x), y)) >= X because [31], by (Star) 31] rec*(0, X, /\x./\y.yap(F(x), y)) >= X because [32], by (Select) 32] X >= X by (Meta) 33] rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [34], by (Star) 34] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [35], by (Select) 35] yap(F(rec*(s(X), Y, /\x./\y.yap(F(x), y))), rec*(s(X), Y, /\z./\u.yap(F(z), u))) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap in Mul, [36] and [38], by (Fun) 36] F(rec*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [37], by (Meta) 37] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [24], by (Select) 38] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec in Mul, [14], [16] and [17], by (Stat) 39] yap(F, X) >= @_{o -> o}(F, X) because [40], by (Star) 40] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [41] and [42], by (Copy) 41] yap*(F, X) >= F because [28], by (Select) 42] yap*(F, X) >= X because [29], by (Select) 43] rec(X, Y, F) >= rec#(X, Y, F) because rec = rec#, rec in Mul, [44], [45] and [46], by (Fun) 44] X >= X by (Meta) 45] Y >= Y by (Meta) 46] F >= F by (Meta) 47] yap(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because [48], by (Star) 48] yap*(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because yap > #argfun-yap## and [49], by (Copy) 49] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [50] and [52], by (Copy) 50] yap*(F, X) >= F because [51], by (Select) 51] F >= F by (Meta) 52] yap*(F, X) >= X because [53], by (Select) 53] X >= X by (Meta) By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_3, R_0, minimal, all) by (P_4, R_0, minimal, all), where P_4 consists of: rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) yap#(F, X) =#> F(X) Thus, the original system is terminating if (P_4, R_0, minimal, all) is finite. We consider the dependency pair problem (P_4, R_0, minimal, all). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 0, 1 This graph has the following strongly connected components: P_5: rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) P_6: yap#(F, X) =#> F(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_4, R_0, m, f) by (P_5, R_0, m, f) and (P_6, R_0, m, f). Thus, the original system is terminating if each of (P_5, R_0, minimal, all) and (P_6, R_0, minimal, all) is finite. We consider the dependency pair problem (P_6, R_0, minimal, all). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: yap#(F, X) >? F(X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) >= F X yap(F, X) >= yap#(F, X) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( yap#(F, X) ) = #argfun-yap##(F X) Since this representation is not advantageous for the higher-order recursive path ordering, we present the strict requirements in their unextended form, which is not problematic since for any F, s and substituion gamma: (F s)gamma beta-reduces to F(s)gamma.) We use a recursive path ordering as defined in [Kop12, Chapter 5]. We choose Lex = {} and Mul = {#argfun-yap##, 0, @_{o -> o}, rec, s, yap, yap#}, and the following precedence: 0 > rec > s > yap > #argfun-yap## > @_{o -> o} > yap# With these choices, we have: 1] #argfun-yap##(@_{o -> o}(F, X)) > @_{o -> o}(F, X) because [2], by definition 2] #argfun-yap##*(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [3], by (Select) 3] @_{o -> o}(F, X) >= @_{o -> o}(F, X) because @_{o -> o} in Mul, [4] and [5], by (Fun) 4] F >= F by (Meta) 5] X >= X by (Meta) 6] rec(0, X, /\x./\y.yap(F(x), y)) >= X because [7], by (Star) 7] rec*(0, X, /\x./\y.yap(F(x), y)) >= X because [8], by (Select) 8] X >= X by (Meta) 9] rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [10], by (Star) 10] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because rec > yap, [11] and [18], by (Copy) 11] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= F(X) because [12], by (Select) 12] /\x.yap(F(rec*(s(X), Y, /\y./\z.yap(F(y), z))), x) >= F(X) because [13], by (Eta)[Kop13:2] 13] F(rec*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [14], by (Meta) 14] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [15], by (Select) 15] s(X) >= X because [16], by (Star) 16] s*(X) >= X because [17], by (Select) 17] X >= X by (Meta) 18] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec in Mul, [19], [21] and [22], by (Stat) 19] s(X) > X because [20], by definition 20] s*(X) >= X because [17], by (Select) 21] Y >= Y by (Meta) 22] /\x./\z.yap(F(x), z) >= /\x./\z.yap(F(x), z) because [23], by (Abs) 23] /\z.yap(F(y), z) >= /\z.yap(F(y), z) because [24], by (Abs) 24] yap(F(y), x) >= yap(F(y), x) because yap in Mul, [25] and [27], by (Fun) 25] F(y) >= F(y) because [26], by (Meta) 26] y >= y by (Var) 27] x >= x by (Var) 28] yap(F, X) >= @_{o -> o}(F, X) because [29], by (Star) 29] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [30] and [31], by (Copy) 30] yap*(F, X) >= F because [4], by (Select) 31] yap*(F, X) >= X because [5], by (Select) 32] yap(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because [33], by (Star) 33] yap*(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because yap > #argfun-yap## and [34], by (Copy) 34] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [35] and [37], by (Copy) 35] yap*(F, X) >= F because [36], by (Select) 36] F >= F by (Meta) 37] yap*(F, X) >= X because [38], by (Select) 38] X >= X by (Meta) By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_6, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_5, R_0, minimal, all) is finite. We consider the dependency pair problem (P_5, R_0, minimal, all). We apply the subterm criterion with the following projection function: nu(rec#) = 1 Thus, we can orient the dependency pairs as follows: nu(rec#(s(X), Y, /\x./\y.yap(F(x), y))) = s(X) |> X = nu(rec#(X, Y, /\z./\u.yap(F(z), u))) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_5, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [Kop13:2] C. Kop. StarHorpo with an Eta-Rule. Unpublished manuscript, http://cl-informatik.uibk.ac.at/users/kop/etahorpo.pdf, 2013.