We consider the system AotoYamada_05__022. Alphabet: cons : [b * c] --> c leaf : [a] --> b mapt : [a -> a * b] --> b maptlist : [a -> a * c] --> c nil : [] --> c node : [c] --> b Rules: mapt(f, leaf(x)) => leaf(f x) mapt(f, node(x)) => node(maptlist(f, x)) maptlist(f, nil) => nil maptlist(f, cons(x, y)) => cons(mapt(f, x), maptlist(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] mapt#(F, node(X)) =#> maptlist#(F, X) 1] maptlist#(F, cons(X, Y)) =#> mapt#(F, X) 2] maptlist#(F, cons(X, Y)) =#> maptlist#(F, Y) Rules R_0: mapt(F, leaf(X)) => leaf(F X) mapt(F, node(X)) => node(maptlist(F, X)) maptlist(F, nil) => nil maptlist(F, cons(X, Y)) => cons(mapt(F, X), maptlist(F, Y)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(mapt#) = 2 nu(maptlist#) = 2 Thus, we can orient the dependency pairs as follows: nu(mapt#(F, node(X))) = node(X) |> X = nu(maptlist#(F, X)) nu(maptlist#(F, cons(X, Y))) = cons(X, Y) |> X = nu(mapt#(F, X)) nu(maptlist#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(maptlist#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_0, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.