We consider the system Applicative_05__Ex3Lists. Alphabet: append : [b * b] --> b cons : [a * b] --> b map : [a -> a * b] --> b nil : [] --> b Rules: append(nil, x) => x append(cons(x, y), z) => cons(x, append(y, z)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) append(append(x, y), z) => append(x, append(y, z)) map(f, append(x, y)) => append(map(f, x), map(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) append(append(X, Y), Z) => append(X, append(Y, Z)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || append(append(%X, %Y), %Z) -> append(%X, append(%Y, %Z)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(append(x_1, x_2)) = 1 + 2*x_1 + x_2 || POL(cons(x_1, x_2)) = 1 + x_1 + x_2 || POL(nil) = 1 || POL(~PAIR(x_1, x_2)) = 1 + x_1 + x_2 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || append(append(%X, %Y), %Z) -> append(%X, append(%Y, %Z)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] map#(F, append(X, Y)) =#> append#(map(F, X), map(F, Y)) 2] map#(F, append(X, Y)) =#> map#(F, X) 3] map#(F, append(X, Y)) =#> map#(F, Y) Rules R_0: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) append(append(X, Y), Z) => append(X, append(Y, Z)) map(F, append(X, Y)) => append(map(F, X), map(F, Y)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 2, 3 * 1 : * 2 : 0, 1, 2, 3 * 3 : 0, 1, 2, 3 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) map#(F, append(X, Y)) =#> map#(F, X) map#(F, append(X, Y)) =#> map#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) nu(map#(F, append(X, Y))) = append(X, Y) |> X = nu(map#(F, X)) nu(map#(F, append(X, Y))) = append(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.