We consider the system Applicative_05__TakeDropWhile. Alphabet: cons : [a * c] --> c dropWhile : [a -> b * c] --> c if : [b * c * c] --> c nil : [] --> c takeWhile : [a -> b * c] --> c true : [] --> b Rules: if(true, x, y) => x if(true, x, y) => y takeWhile(f, nil) => nil takeWhile(f, cons(x, y)) => if(f x, cons(x, takeWhile(f, y)), nil) dropWhile(f, nil) => nil dropWhile(f, cons(x, y)) => if(f x, dropWhile(f, y), cons(x, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: if(true, X, Y) => X if(true, X, Y) => Y Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || if(true, %X, %Y) -> %X || if(true, %X, %Y) -> %Y || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(if(x_1, x_2, x_3)) = 2 + 2*x_1 + x_2 + x_3 || POL(true) = 2 || POL(~PAIR(x_1, x_2)) = 2 + x_1 + x_2 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || if(true, %X, %Y) -> %X || if(true, %X, %Y) -> %Y || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] takeWhile#(F, cons(X, Y)) =#> if#(F X, cons(X, takeWhile(F, Y)), nil) 1] takeWhile#(F, cons(X, Y)) =#> takeWhile#(F, Y) 2] dropWhile#(F, cons(X, Y)) =#> if#(F X, dropWhile(F, Y), cons(X, Y)) 3] dropWhile#(F, cons(X, Y)) =#> dropWhile#(F, Y) Rules R_0: if(true, X, Y) => X if(true, X, Y) => Y takeWhile(F, nil) => nil takeWhile(F, cons(X, Y)) => if(F X, cons(X, takeWhile(F, Y)), nil) dropWhile(F, nil) => nil dropWhile(F, cons(X, Y)) => if(F X, dropWhile(F, Y), cons(X, Y)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : 0, 1 * 2 : * 3 : 2, 3 This graph has the following strongly connected components: P_1: takeWhile#(F, cons(X, Y)) =#> takeWhile#(F, Y) P_2: dropWhile#(F, cons(X, Y)) =#> dropWhile#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(dropWhile#) = 2 Thus, we can orient the dependency pairs as follows: nu(dropWhile#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(dropWhile#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(takeWhile#) = 2 Thus, we can orient the dependency pairs as follows: nu(takeWhile#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(takeWhile#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.