We consider the system AotoYamada_05__022. Alphabet: cons : [b * c] --> c leaf : [a] --> b mapt : [a -> a * b] --> b maptlist : [a -> a * c] --> c nil : [] --> c node : [c] --> b Rules: mapt(f, leaf(x)) => leaf(f x) mapt(f, node(x)) => node(maptlist(f, x)) maptlist(f, nil) => nil maptlist(f, cons(x, y)) => cons(mapt(f, x), maptlist(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] mapt#(F, leaf(X)) =#> F(X) 1] mapt#(F, node(X)) =#> maptlist#(F, X) 2] maptlist#(F, cons(X, Y)) =#> mapt#(F, X) 3] maptlist#(F, cons(X, Y)) =#> maptlist#(F, Y) Rules R_0: mapt(F, leaf(X)) => leaf(F X) mapt(F, node(X)) => node(maptlist(F, X)) maptlist(F, nil) => nil maptlist(F, cons(X, Y)) => cons(mapt(F, X), maptlist(F, Y)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). The formative rules of (P_0, R_0) are R_1 ::= mapt(F, leaf(X)) => leaf(F X) mapt(F, node(X)) => node(maptlist(F, X)) maptlist(F, cons(X, Y)) => cons(mapt(F, X), maptlist(F, Y)) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_0, R_1, minimal, formative). Thus, the original system is terminating if (P_0, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: mapt#(F, leaf(X)) >? F(X) mapt#(F, node(X)) >? maptlist#(F, X) maptlist#(F, cons(X, Y)) >? mapt#(F, X) maptlist#(F, cons(X, Y)) >? maptlist#(F, Y) mapt(F, leaf(X)) >= leaf(F X) mapt(F, node(X)) >= node(maptlist(F, X)) maptlist(F, cons(X, Y)) >= cons(mapt(F, X), maptlist(F, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.y1 + 2y0 leaf = \y0.2 + y0 mapt = \G0y1.2y1 + 2y1G0(y1) mapt# = \G0y1.1 + 2y1G0(y1) maptlist = \G0y1.2y1 + 2y1G0(y1) maptlist# = \G0y1.1 + y1G0(y1) node = \y0.2 + y0 Using this interpretation, the requirements translate to: [[mapt#(_F0, leaf(_x1))]] = 1 + 2x1F0(2 + x1) + 4F0(2 + x1) > F0(x1) = [[_F0(_x1)]] [[mapt#(_F0, node(_x1))]] = 1 + 2x1F0(2 + x1) + 4F0(2 + x1) >= 1 + x1F0(x1) = [[maptlist#(_F0, _x1)]] [[maptlist#(_F0, cons(_x1, _x2))]] = 1 + 2x1F0(x2 + 2x1) + x2F0(x2 + 2x1) >= 1 + 2x1F0(x1) = [[mapt#(_F0, _x1)]] [[maptlist#(_F0, cons(_x1, _x2))]] = 1 + 2x1F0(x2 + 2x1) + x2F0(x2 + 2x1) >= 1 + x2F0(x2) = [[maptlist#(_F0, _x2)]] [[mapt(_F0, leaf(_x1))]] = 4 + 2x1 + 2x1F0(2 + x1) + 4F0(2 + x1) >= 2 + max(x1, F0(x1)) = [[leaf(_F0 _x1)]] [[mapt(_F0, node(_x1))]] = 4 + 2x1 + 2x1F0(2 + x1) + 4F0(2 + x1) >= 2 + 2x1 + 2x1F0(x1) = [[node(maptlist(_F0, _x1))]] [[maptlist(_F0, cons(_x1, _x2))]] = 2x2 + 4x1 + 2x2F0(x2 + 2x1) + 4x1F0(x2 + 2x1) >= 2x2 + 4x1 + 2x2F0(x2) + 4x1F0(x1) = [[cons(mapt(_F0, _x1), maptlist(_F0, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_1, minimal, formative) by (P_1, R_1, minimal, formative), where P_1 consists of: mapt#(F, node(X)) =#> maptlist#(F, X) maptlist#(F, cons(X, Y)) =#> mapt#(F, X) maptlist#(F, cons(X, Y)) =#> maptlist#(F, Y) Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We apply the subterm criterion with the following projection function: nu(mapt#) = 2 nu(maptlist#) = 2 Thus, we can orient the dependency pairs as follows: nu(mapt#(F, node(X))) = node(X) |> X = nu(maptlist#(F, X)) nu(maptlist#(F, cons(X, Y))) = cons(X, Y) |> X = nu(mapt#(F, X)) nu(maptlist#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(maptlist#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_1, minimal, f) by ({}, R_1, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.