We consider the system Applicative_05__BTreeMember. Alphabet: 0 : [] --> a eq : [a * a] --> c false : [] --> c fork : [b * a * b] --> b if : [c * c * c] --> c lt : [a * a] --> c member : [a * b] --> c null : [] --> b s : [a] --> a true : [] --> c Rules: lt(s(x), s(y)) => lt(x, y) lt(0, s(x)) => true lt(x, 0) => false eq(x, x) => true eq(s(x), 0) => false eq(0, s(x)) => false member(x, null) => false member(x, fork(y, z, u)) => if(lt(x, z), member(x, y), if(eq(x, z), true, member(x, u))) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: lt(s(X), s(Y)) => lt(X, Y) lt(0, s(X)) => true lt(X, 0) => false eq(X, X) => true eq(s(X), 0) => false eq(0, s(X)) => false member(X, null) => false member(X, fork(Y, Z, U)) => if(lt(X, Z), member(X, Y), if(eq(X, Z), true, member(X, U))) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || lt(s(%X), s(%Y)) -> lt(%X, %Y) || lt(0, s(%X)) -> true || lt(%X, 0) -> false || eq(%X, %X) -> true || eq(s(%X), 0) -> false || eq(0, s(%X)) -> false || member(%X, null) -> false || member(%X, fork(%Y, %Z, %U)) -> if(lt(%X, %Z), member(%X, %Y), if(eq(%X, %Z), true, member(%X, %U))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Quasi precedence: || s_1 > [lt_2, true, eq_2] > [false, null] || member_2 > [lt_2, true, eq_2] > [false, null] || member_2 > if_3 || || || Status: || lt_2: multiset status || s_1: multiset status || 0: multiset status || true: multiset status || false: multiset status || eq_2: [2,1] || member_2: multiset status || null: multiset status || fork_3: multiset status || if_3: multiset status || ~PAIR_2: multiset status || || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || lt(s(%X), s(%Y)) -> lt(%X, %Y) || lt(0, s(%X)) -> true || lt(%X, 0) -> false || eq(%X, %X) -> true || eq(s(%X), 0) -> false || eq(0, s(%X)) -> false || member(%X, null) -> false || member(%X, fork(%Y, %Z, %U)) -> if(lt(%X, %Z), member(%X, %Y), if(eq(%X, %Z), true, member(%X, %U))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. We thus obtain the following dependency pair problem (P_0, R_0, minimal, all): Dependency Pairs P_0: Rules R_0: lt(s(X), s(Y)) => lt(X, Y) lt(0, s(X)) => true lt(X, 0) => false eq(X, X) => true eq(s(X), 0) => false eq(0, s(X)) => false member(X, null) => false member(X, fork(Y, Z, U)) => if(lt(X, Z), member(X, Y), if(eq(X, Z), true, member(X, U))) Thus, the original system is terminating if (P_0, R_0, minimal, all) is finite. We consider the dependency pair problem (P_0, R_0, minimal, all). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.