We consider the system Applicative_05__Ex3Lists. Alphabet: append : [b * b] --> b cons : [a * b] --> b map : [a -> a * b] --> b nil : [] --> b Rules: append(nil, x) => x append(cons(x, y), z) => cons(x, append(y, z)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) append(append(x, y), z) => append(x, append(y, z)) map(f, append(x, y)) => append(map(f, x), map(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) append(append(X, Y), Z) => append(X, append(Y, Z)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || append(append(%X, %Y), %Z) -> append(%X, append(%Y, %Z)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Knuth-Bendix order [KBO] with precedence:~PAIR_2 > append_2 > cons_2 > nil || || and weight map: || || nil=1 || append_2=0 || cons_2=0 || ~PAIR_2=0 || || The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || append(append(%X, %Y), %Z) -> append(%X, append(%Y, %Z)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) 2] map#(F, append(X, Y)) =#> append#(map(F, X), map(F, Y)) 3] map#(F, append(X, Y)) =#> map#(F, X) 4] map#(F, append(X, Y)) =#> map#(F, Y) Rules R_0: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) append(append(X, Y), Z) => append(X, append(Y, Z)) map(F, append(X, Y)) => append(map(F, X), map(F, Y)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 2, 3, 4 * 1 : 0, 1, 2, 3, 4 * 2 : * 3 : 0, 1, 2, 3, 4 * 4 : 0, 1, 2, 3, 4 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> F(X) map#(F, cons(X, Y)) =#> map#(F, Y) map#(F, append(X, Y)) =#> map#(F, X) map#(F, append(X, Y)) =#> map#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) map#(F, append(X, Y)) >? map#(F, X) map#(F, append(X, Y)) >? map#(F, Y) append(nil, X) >= X append(cons(X, Y), Z) >= cons(X, append(Y, Z)) map(F, nil) >= nil map(F, cons(X, Y)) >= cons(F X, map(F, Y)) append(append(X, Y), Z) >= append(X, append(Y, Z)) map(F, append(X, Y)) >= append(map(F, X), map(F, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: append = \y0y1.2 + y0 + y1 cons = \y0y1.2 + y0 + y1 map = \G0y1.y1 + G0(y1) + 2y1G0(y1) map# = \G0y1.3 + y1 + 2G0(y1) nil = 0 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 5 + x1 + x2 + 2F0(2 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 5 + x1 + x2 + 2F0(2 + x1 + x2) > 3 + x2 + 2F0(x2) = [[map#(_F0, _x2)]] [[map#(_F0, append(_x1, _x2))]] = 5 + x1 + x2 + 2F0(2 + x1 + x2) > 3 + x1 + 2F0(x1) = [[map#(_F0, _x1)]] [[map#(_F0, append(_x1, _x2))]] = 5 + x1 + x2 + 2F0(2 + x1 + x2) > 3 + x2 + 2F0(x2) = [[map#(_F0, _x2)]] [[append(nil, _x0)]] = 2 + x0 >= x0 = [[_x0]] [[append(cons(_x0, _x1), _x2)]] = 4 + x0 + x1 + x2 >= 4 + x0 + x1 + x2 = [[cons(_x0, append(_x1, _x2))]] [[map(_F0, nil)]] = F0(0) >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 2 + x1 + x2 + 2x1F0(2 + x1 + x2) + 2x2F0(2 + x1 + x2) + 5F0(2 + x1 + x2) >= 2 + x2 + F0(x2) + 2x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[append(append(_x0, _x1), _x2)]] = 4 + x0 + x1 + x2 >= 4 + x0 + x1 + x2 = [[append(_x0, append(_x1, _x2))]] [[map(_F0, append(_x1, _x2))]] = 2 + x1 + x2 + 2x1F0(2 + x1 + x2) + 2x2F0(2 + x1 + x2) + 5F0(2 + x1 + x2) >= 2 + x1 + x2 + F0(x1) + F0(x2) + 2x1F0(x1) + 2x2F0(x2) = [[append(map(_F0, _x1), map(_F0, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_1, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.