We consider the system Applicative_AG01_innermost__#4.26. Alphabet: 0 : [] --> b cons : [c * d] --> d false : [] --> a filter : [c -> a * d] --> d filter2 : [a * c -> a * c * d] --> d if : [a * b * b] --> b le : [b * b] --> a map : [c -> c * d] --> d minus : [b * b] --> b nil : [] --> d p : [b] --> b s : [b] --> b true : [] --> a Rules: p(0) => 0 p(s(x)) => x le(0, x) => true le(s(x), 0) => false le(s(x), s(y)) => le(x, y) minus(x, y) => if(le(x, y), x, y) if(true, x, y) => 0 if(false, x, y) => s(minus(p(x), y)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: p(0) => 0 p(s(X)) => X le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) minus(X, Y) => if(le(X, Y), X, Y) if(true, X, Y) => 0 if(false, X, Y) => s(minus(p(X), Y)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) AND || (7) QDP || (8) UsableRulesProof [EQUIVALENT] || (9) QDP || (10) QReductionProof [EQUIVALENT] || (11) QDP || (12) QDPSizeChangeProof [EQUIVALENT] || (13) YES || (14) QDP || (15) UsableRulesProof [EQUIVALENT] || (16) QDP || (17) QReductionProof [EQUIVALENT] || (18) QDP || (19) QDPOrderProof [EQUIVALENT] || (20) QDP || (21) DependencyGraphProof [EQUIVALENT] || (22) TRUE || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || p(0) -> 0 || p(s(%X)) -> %X || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, %Y) -> if(le(%X, %Y), %X, %Y) || if(true, %X, %Y) -> 0 || if(false, %X, %Y) -> s(minus(p(%X), %Y)) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || p(0) -> 0 || p(s(%X)) -> %X || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, %Y) -> if(le(%X, %Y), %X, %Y) || if(true, %X, %Y) -> 0 || if(false, %X, %Y) -> s(minus(p(%X), %Y)) || || The set Q consists of the following terms: || || p(0) || p(s(x0)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || minus(x0, x1) || if(true, x0, x1) || if(false, x0, x1) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || MINUS(%X, %Y) -> IF(le(%X, %Y), %X, %Y) || MINUS(%X, %Y) -> LE(%X, %Y) || IF(false, %X, %Y) -> MINUS(p(%X), %Y) || IF(false, %X, %Y) -> P(%X) || || The TRS R consists of the following rules: || || p(0) -> 0 || p(s(%X)) -> %X || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, %Y) -> if(le(%X, %Y), %X, %Y) || if(true, %X, %Y) -> 0 || if(false, %X, %Y) -> s(minus(p(%X), %Y)) || || The set Q consists of the following terms: || || p(0) || p(s(x0)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || minus(x0, x1) || if(true, x0, x1) || if(false, x0, x1) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes. || ---------------------------------------- || || (6) || Complex Obligation (AND) || || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || The TRS R consists of the following rules: || || p(0) -> 0 || p(s(%X)) -> %X || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, %Y) -> if(le(%X, %Y), %X, %Y) || if(true, %X, %Y) -> 0 || if(false, %X, %Y) -> s(minus(p(%X), %Y)) || || The set Q consists of the following terms: || || p(0) || p(s(x0)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || minus(x0, x1) || if(true, x0, x1) || if(false, x0, x1) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (9) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || p(0) || p(s(x0)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || minus(x0, x1) || if(true, x0, x1) || if(false, x0, x1) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (10) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || p(0) || p(s(x0)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || minus(x0, x1) || if(true, x0, x1) || if(false, x0, x1) || || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LE(s(%X), s(%Y)) -> LE(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (13) || YES || || ---------------------------------------- || || (14) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(%X, %Y) -> IF(le(%X, %Y), %X, %Y) || IF(false, %X, %Y) -> MINUS(p(%X), %Y) || || The TRS R consists of the following rules: || || p(0) -> 0 || p(s(%X)) -> %X || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, %Y) -> if(le(%X, %Y), %X, %Y) || if(true, %X, %Y) -> 0 || if(false, %X, %Y) -> s(minus(p(%X), %Y)) || || The set Q consists of the following terms: || || p(0) || p(s(x0)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || minus(x0, x1) || if(true, x0, x1) || if(false, x0, x1) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (15) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (16) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(%X, %Y) -> IF(le(%X, %Y), %X, %Y) || IF(false, %X, %Y) -> MINUS(p(%X), %Y) || || The TRS R consists of the following rules: || || p(0) -> 0 || p(s(%X)) -> %X || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || p(0) || p(s(x0)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || minus(x0, x1) || if(true, x0, x1) || if(false, x0, x1) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (17) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, x1) || if(true, x0, x1) || if(false, x0, x1) || || || ---------------------------------------- || || (18) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(%X, %Y) -> IF(le(%X, %Y), %X, %Y) || IF(false, %X, %Y) -> MINUS(p(%X), %Y) || || The TRS R consists of the following rules: || || p(0) -> 0 || p(s(%X)) -> %X || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || p(0) || p(s(x0)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (19) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || IF(false, %X, %Y) -> MINUS(p(%X), %Y) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial interpretation [POLO,RATPOLO]: || || POL(0) = [1/4] || POL(IF(x_1, x_2, x_3)) = [1/2] + [1/4]x_1 + [1/4]x_2 + [1/4]x_3 || POL(MINUS(x_1, x_2)) = [1/2] + [1/2]x_1 + [1/4]x_2 || POL(false) = [1] || POL(le(x_1, x_2)) = [1/2]x_1 || POL(p(x_1)) = [1/4] + [1/2]x_1 || POL(s(x_1)) = [4] + [4]x_1 || POL(true) = 0 || The value of delta used in the strict ordering is 1/8. || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || p(0) -> 0 || p(s(%X)) -> %X || || || ---------------------------------------- || || (20) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(%X, %Y) -> IF(le(%X, %Y), %X, %Y) || || The TRS R consists of the following rules: || || p(0) -> 0 || p(s(%X)) -> %X || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || p(0) || p(s(x0)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (21) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. || ---------------------------------------- || || (22) || TRUE || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) 2] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 3] filter#(F, cons(X, Y)) =#> F(X) 4] filter2#(true, F, X, Y) =#> filter#(F, Y) 5] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: p(0) => 0 p(s(X)) => X le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) minus(X, Y) => if(le(X, Y), X, Y) if(true, X, Y) => 0 if(false, X, Y) => s(minus(p(X), Y)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). The formative rules of (P_0, R_0) are R_1 ::= p(0) => 0 p(s(X)) => X le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) minus(X, Y) => if(le(X, Y), X, Y) if(true, X, Y) => 0 if(false, X, Y) => s(minus(p(X), Y)) map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_0, R_1, minimal, formative). Thus, the original system is terminating if (P_0, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) p(0) >= 0 p(s(X)) >= X le(0, X) >= true le(s(X), 0) >= false le(s(X), s(Y)) >= le(X, Y) minus(X, Y) >= if(le(X, Y), X, Y) if(true, X, Y) >= 0 if(false, X, Y) >= s(minus(p(X), Y)) map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( minus(X, Y) ) = #argfun-minus#(if(le(X, Y), X, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: #argfun-minus# = \y0.y0 0 = 0 cons = \y0y1.1 + y0 + y1 false = 0 filter = \G0y1.1 + y1 filter2 = \y0G1y2y3.2 + y2 + y3 filter2# = \y0G1y2y3.G1(y3) filter# = \G0y1.G0(y1) if = \y0y1y2.0 le = \y0y1.0 map = \G0y1.y1 + 2y1G0(y1) map# = \G0y1.3 + 2y1 + y1G0(y1) minus = \y0y1.0 p = \y0.2y0 s = \y0.y0 true = 0 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 5 + 2x1 + 2x2 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 5 + 2x1 + 2x2 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) > 3 + 2x2 + x2F0(x2) = [[map#(_F0, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = F0(1 + x1 + x2) >= F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = F0(1 + x1 + x2) >= F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = F0(x2) >= F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = F0(x2) >= F0(x2) = [[filter#(_F0, _x2)]] [[p(0)]] = 0 >= 0 = [[0]] [[p(s(_x0))]] = 2x0 >= x0 = [[_x0]] [[le(0, _x0)]] = 0 >= 0 = [[true]] [[le(s(_x0), 0)]] = 0 >= 0 = [[false]] [[le(s(_x0), s(_x1))]] = 0 >= 0 = [[le(_x0, _x1)]] [[#argfun-minus#(if(le(_x0, _x1), _x0, _x1))]] = 0 >= 0 = [[if(le(_x0, _x1), _x0, _x1)]] [[if(true, _x0, _x1)]] = 0 >= 0 = [[0]] [[if(false, _x0, _x1)]] = 0 >= 0 = [[s(#argfun-minus#(if(le(p(_x0), _x1), p(_x0), _x1)))]] [[map(_F0, cons(_x1, _x2))]] = 1 + x1 + x2 + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(1 + x1 + x2) >= 1 + x2 + 2x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, cons(_x1, _x2))]] = 2 + x1 + x2 >= 2 + x1 + x2 = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 2 + x1 + x2 >= 2 + x1 + x2 = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 2 + x1 + x2 >= 1 + x2 = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_1, minimal, formative) by (P_1, R_1, minimal, formative), where P_1 consists of: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) =#> F(X) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) p(0) >= 0 p(s(X)) >= X le(0, X) >= true le(s(X), 0) >= false le(s(X), s(Y)) >= le(X, Y) minus(X, Y) >= if(le(X, Y), X, Y) if(true, X, Y) >= 0 if(false, X, Y) >= s(minus(p(X), Y)) map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( minus(X, Y) ) = #argfun-minus#(if(le(X, Y), X, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: #argfun-minus# = \y0.y0 0 = 1 cons = \y0y1.1 + y0 + 2y1 false = 0 filter = \G0y1.y1 filter2 = \y0G1y2y3.1 + y2 + 2y3 filter2# = \y0G1y2y3.2 + y3G1(y3) filter# = \G0y1.2 + y1G0(y1) if = \y0y1y2.1 le = \y0y1.2 map = \G0y1.y1 + y1G0(y1) minus = \y0y1.0 p = \y0.2y0 s = \y0.y0 true = 0 Using this interpretation, the requirements translate to: [[filter#(_F0, cons(_x1, _x2))]] = 2 + F0(1 + x1 + 2x2) + 2x2F0(1 + x1 + 2x2) + x1F0(1 + x1 + 2x2) >= 2 + x2F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 2 + F0(1 + x1 + 2x2) + 2x2F0(1 + x1 + 2x2) + x1F0(1 + x1 + 2x2) > F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = 2 + x2F0(x2) >= 2 + x2F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = 2 + x2F0(x2) >= 2 + x2F0(x2) = [[filter#(_F0, _x2)]] [[p(0)]] = 2 >= 1 = [[0]] [[p(s(_x0))]] = 2x0 >= x0 = [[_x0]] [[le(0, _x0)]] = 2 >= 0 = [[true]] [[le(s(_x0), 0)]] = 2 >= 0 = [[false]] [[le(s(_x0), s(_x1))]] = 2 >= 2 = [[le(_x0, _x1)]] [[#argfun-minus#(if(le(_x0, _x1), _x0, _x1))]] = 1 >= 1 = [[if(le(_x0, _x1), _x0, _x1)]] [[if(true, _x0, _x1)]] = 1 >= 1 = [[0]] [[if(false, _x0, _x1)]] = 1 >= 1 = [[s(#argfun-minus#(if(le(p(_x0), _x1), p(_x0), _x1)))]] [[map(_F0, cons(_x1, _x2))]] = 1 + x1 + 2x2 + F0(1 + x1 + 2x2) + 2x2F0(1 + x1 + 2x2) + x1F0(1 + x1 + 2x2) >= 1 + 2x2 + 2x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, cons(_x1, _x2))]] = 1 + x1 + 2x2 >= 1 + x1 + 2x2 = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 1 + x1 + 2x2 >= 1 + x1 + 2x2 = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 1 + x1 + 2x2 >= x2 = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_1, minimal, formative) by (P_2, R_1, minimal, formative), where P_2 consists of: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_2, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_1, minimal, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_1, minimal, f) by (P_3, R_1, minimal, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_3, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.