We consider the system Applicative_AG01_innermost__#4.34. Alphabet: 0 : [] --> b 1 : [] --> b c : [b] --> b cons : [c * d] --> d f : [b] --> a false : [] --> a filter : [c -> a * d] --> d filter2 : [a * c -> a * c * d] --> d g : [b * b] --> b if : [a * b * b] --> b map : [c -> c * d] --> d nil : [] --> d s : [b] --> b true : [] --> a Rules: f(0) => true f(1) => false f(s(x)) => f(x) if(true, x, y) => x if(false, x, y) => y g(s(x), s(y)) => if(f(x), s(x), s(y)) g(x, c(y)) => g(x, g(s(c(y)), y)) map(h, nil) => nil map(h, cons(x, y)) => cons(h x, map(h, y)) filter(h, nil) => nil filter(h, cons(x, y)) => filter2(h x, h, x, y) filter2(true, h, x, y) => cons(x, filter(h, y)) filter2(false, h, x, y) => filter(h, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: f(0) => true f(1) => false f(s(X)) => f(X) if(true, X, Y) => X if(false, X, Y) => Y g(s(X), s(Y)) => if(f(X), s(X), s(Y)) g(X, c(Y)) => g(X, g(s(c(Y)), Y)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) AND || (7) QDP || (8) UsableRulesProof [EQUIVALENT] || (9) QDP || (10) QReductionProof [EQUIVALENT] || (11) QDP || (12) QDPSizeChangeProof [EQUIVALENT] || (13) YES || (14) QDP || (15) QDPOrderProof [EQUIVALENT] || (16) QDP || (17) PisEmptyProof [EQUIVALENT] || (18) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || g(s(%X), s(%Y)) -> if(f(%X), s(%X), s(%Y)) || g(%X, c(%Y)) -> g(%X, g(s(c(%Y)), %Y)) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || g(s(%X), s(%Y)) -> if(f(%X), s(%X), s(%Y)) || g(%X, c(%Y)) -> g(%X, g(s(c(%Y)), %Y)) || || The set Q consists of the following terms: || || f(0) || f(1) || f(s(x0)) || if(true, x0, x1) || if(false, x0, x1) || g(s(x0), s(x1)) || g(x0, c(x1)) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X)) -> F(%X) || G(s(%X), s(%Y)) -> IF(f(%X), s(%X), s(%Y)) || G(s(%X), s(%Y)) -> F(%X) || G(%X, c(%Y)) -> G(%X, g(s(c(%Y)), %Y)) || G(%X, c(%Y)) -> G(s(c(%Y)), %Y) || || The TRS R consists of the following rules: || || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || g(s(%X), s(%Y)) -> if(f(%X), s(%X), s(%Y)) || g(%X, c(%Y)) -> g(%X, g(s(c(%Y)), %Y)) || || The set Q consists of the following terms: || || f(0) || f(1) || f(s(x0)) || if(true, x0, x1) || if(false, x0, x1) || g(s(x0), s(x1)) || g(x0, c(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes. || ---------------------------------------- || || (6) || Complex Obligation (AND) || || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X)) -> F(%X) || || The TRS R consists of the following rules: || || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || g(s(%X), s(%Y)) -> if(f(%X), s(%X), s(%Y)) || g(%X, c(%Y)) -> g(%X, g(s(c(%Y)), %Y)) || || The set Q consists of the following terms: || || f(0) || f(1) || f(s(x0)) || if(true, x0, x1) || if(false, x0, x1) || g(s(x0), s(x1)) || g(x0, c(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (9) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X)) -> F(%X) || || R is empty. || The set Q consists of the following terms: || || f(0) || f(1) || f(s(x0)) || if(true, x0, x1) || if(false, x0, x1) || g(s(x0), s(x1)) || g(x0, c(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (10) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || f(0) || f(1) || f(s(x0)) || if(true, x0, x1) || if(false, x0, x1) || g(s(x0), s(x1)) || g(x0, c(x1)) || || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X)) -> F(%X) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *F(s(%X)) -> F(%X) || The graph contains the following edges 1 > 1 || || || ---------------------------------------- || || (13) || YES || || ---------------------------------------- || || (14) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || G(%X, c(%Y)) -> G(s(c(%Y)), %Y) || G(%X, c(%Y)) -> G(%X, g(s(c(%Y)), %Y)) || || The TRS R consists of the following rules: || || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || g(s(%X), s(%Y)) -> if(f(%X), s(%X), s(%Y)) || g(%X, c(%Y)) -> g(%X, g(s(c(%Y)), %Y)) || || The set Q consists of the following terms: || || f(0) || f(1) || f(s(x0)) || if(true, x0, x1) || if(false, x0, x1) || g(s(x0), s(x1)) || g(x0, c(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (15) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || G(%X, c(%Y)) -> G(s(c(%Y)), %Y) || G(%X, c(%Y)) -> G(%X, g(s(c(%Y)), %Y)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(1) = 0 || POL(G(x_1, x_2)) = x_2 || POL(c(x_1)) = 1 + x_1 || POL(f(x_1)) = 0 || POL(false) = 0 || POL(g(x_1, x_2)) = 0 || POL(if(x_1, x_2, x_3)) = x_2 + x_3 || POL(s(x_1)) = 0 || POL(true) = 0 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || g(s(%X), s(%Y)) -> if(f(%X), s(%X), s(%Y)) || g(%X, c(%Y)) -> g(%X, g(s(c(%Y)), %Y)) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || || || ---------------------------------------- || || (16) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || g(s(%X), s(%Y)) -> if(f(%X), s(%X), s(%Y)) || g(%X, c(%Y)) -> g(%X, g(s(c(%Y)), %Y)) || || The set Q consists of the following terms: || || f(0) || f(1) || f(s(x0)) || if(true, x0, x1) || if(false, x0, x1) || g(s(x0), s(x1)) || g(x0, c(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (17) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (18) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) 2] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 3] filter#(F, cons(X, Y)) =#> F(X) 4] filter2#(true, F, X, Y) =#> filter#(F, Y) 5] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: f(0) => true f(1) => false f(s(X)) => f(X) if(true, X, Y) => X if(false, X, Y) => Y g(s(X), s(Y)) => if(f(X), s(X), s(Y)) g(X, c(Y)) => g(X, g(s(c(Y)), Y)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). The formative rules of (P_0, R_0) are R_1 ::= f(0) => true f(1) => false f(s(X)) => f(X) if(true, X, Y) => X if(false, X, Y) => Y g(s(X), s(Y)) => if(f(X), s(X), s(Y)) g(X, c(Y)) => g(X, g(s(c(Y)), Y)) map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_0, R_1, minimal, formative). Thus, the original system is terminating if (P_0, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) f(0) >= true f(1) >= false f(s(X)) >= f(X) if(true, X, Y) >= X if(false, X, Y) >= Y g(s(X), s(Y)) >= if(f(X), s(X), s(Y)) g(X, c(Y)) >= g(X, g(s(c(Y)), Y)) map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 3 1 = 3 c = \y0.0 cons = \y0y1.3 + y0 + 2y1 f = \y0.3 false = 0 filter = \G0y1.y1 filter2 = \y0G1y2y3.3 + y2 + 2y3 filter2# = \y0G1y2y3.3y3G1(y3) filter# = \G0y1.3y1G0(y1) g = \y0y1.0 if = \y0y1y2.y1 + y2 map = \G0y1.2y1 + G0(0) + 2G0(y1) + 3y1G0(y1) map# = \G0y1.3 + 2y1 + G0(y1) s = \y0.0 true = 0 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 9 + 2x1 + 4x2 + F0(3 + x1 + 2x2) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 9 + 2x1 + 4x2 + F0(3 + x1 + 2x2) > 3 + 2x2 + F0(x2) = [[map#(_F0, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 3x1F0(3 + x1 + 2x2) + 6x2F0(3 + x1 + 2x2) + 9F0(3 + x1 + 2x2) >= 3x2F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 3x1F0(3 + x1 + 2x2) + 6x2F0(3 + x1 + 2x2) + 9F0(3 + x1 + 2x2) >= F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = 3x2F0(x2) >= 3x2F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = 3x2F0(x2) >= 3x2F0(x2) = [[filter#(_F0, _x2)]] [[f(0)]] = 3 >= 0 = [[true]] [[f(1)]] = 3 >= 0 = [[false]] [[f(s(_x0))]] = 3 >= 3 = [[f(_x0)]] [[if(true, _x0, _x1)]] = x0 + x1 >= x0 = [[_x0]] [[if(false, _x0, _x1)]] = x0 + x1 >= x1 = [[_x1]] [[g(s(_x0), s(_x1))]] = 0 >= 0 = [[if(f(_x0), s(_x0), s(_x1))]] [[g(_x0, c(_x1))]] = 0 >= 0 = [[g(_x0, g(s(c(_x1)), _x1))]] [[map(_F0, cons(_x1, _x2))]] = 6 + 2x1 + 4x2 + F0(0) + 3x1F0(3 + x1 + 2x2) + 6x2F0(3 + x1 + 2x2) + 11F0(3 + x1 + 2x2) >= 3 + 4x2 + 2F0(0) + 4F0(x2) + 6x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, cons(_x1, _x2))]] = 3 + x1 + 2x2 >= 3 + x1 + 2x2 = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 3 + x1 + 2x2 >= 3 + x1 + 2x2 = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 3 + x1 + 2x2 >= x2 = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_1, minimal, formative) by (P_1, R_1, minimal, formative), where P_1 consists of: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) =#> F(X) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) f(0) >= true f(1) >= false f(s(X)) >= f(X) if(true, X, Y) >= X if(false, X, Y) >= Y g(s(X), s(Y)) >= if(f(X), s(X), s(Y)) g(X, c(Y)) >= g(X, g(s(c(Y)), Y)) map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 3 1 = 3 c = \y0.0 cons = \y0y1.2 + y0 + 2y1 f = \y0.3 false = 0 filter = \G0y1.y1 filter2 = \y0G1y2y3.2 + y2 + 2y3 filter2# = \y0G1y2y3.1 + 2y3 + 2y3G1(y3) filter# = \G0y1.1 + 2y1 + 2y1G0(y1) g = \y0y1.0 if = \y0y1y2.y1 + y2 map = \G0y1.y1 + 2y1G0(y1) s = \y0.0 true = 0 Using this interpretation, the requirements translate to: [[filter#(_F0, cons(_x1, _x2))]] = 5 + 2x1 + 4x2 + 2x1F0(2 + x1 + 2x2) + 4x2F0(2 + x1 + 2x2) + 4F0(2 + x1 + 2x2) > 1 + 2x2 + 2x2F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 5 + 2x1 + 4x2 + 2x1F0(2 + x1 + 2x2) + 4x2F0(2 + x1 + 2x2) + 4F0(2 + x1 + 2x2) > F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = 1 + 2x2 + 2x2F0(x2) >= 1 + 2x2 + 2x2F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = 1 + 2x2 + 2x2F0(x2) >= 1 + 2x2 + 2x2F0(x2) = [[filter#(_F0, _x2)]] [[f(0)]] = 3 >= 0 = [[true]] [[f(1)]] = 3 >= 0 = [[false]] [[f(s(_x0))]] = 3 >= 3 = [[f(_x0)]] [[if(true, _x0, _x1)]] = x0 + x1 >= x0 = [[_x0]] [[if(false, _x0, _x1)]] = x0 + x1 >= x1 = [[_x1]] [[g(s(_x0), s(_x1))]] = 0 >= 0 = [[if(f(_x0), s(_x0), s(_x1))]] [[g(_x0, c(_x1))]] = 0 >= 0 = [[g(_x0, g(s(c(_x1)), _x1))]] [[map(_F0, cons(_x1, _x2))]] = 2 + x1 + 2x2 + 2x1F0(2 + x1 + 2x2) + 4x2F0(2 + x1 + 2x2) + 4F0(2 + x1 + 2x2) >= 2 + 2x2 + 4x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, cons(_x1, _x2))]] = 2 + x1 + 2x2 >= 2 + x1 + 2x2 = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 2 + x1 + 2x2 >= 2 + x1 + 2x2 = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 2 + x1 + 2x2 >= x2 = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_1, minimal, formative) by (P_2, R_1, minimal, formative), where P_2 consists of: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_2, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.