We consider the system Applicative_AG01_innermost__#4.36. Alphabet: 0 : [] --> b cons : [b * c] --> c eq : [b * b] --> a false : [] --> a filter : [b -> a * c] --> c filter2 : [a * b -> a * b * c] --> c if!fac6220min : [a * c] --> b if!fac6220replace : [a * b * b * c] --> c le : [b * b] --> a map : [b -> b * c] --> c min : [c] --> b nil : [] --> c replace : [b * b * c] --> c s : [b] --> b sort : [c] --> c true : [] --> a Rules: eq(0, 0) => true eq(0, s(x)) => false eq(s(x), 0) => false eq(s(x), s(y)) => eq(x, y) le(0, x) => true le(s(x), 0) => false le(s(x), s(y)) => le(x, y) min(cons(0, nil)) => 0 min(cons(s(x), nil)) => s(x) min(cons(x, cons(y, z))) => if!fac6220min(le(x, y), cons(x, cons(y, z))) if!fac6220min(true, cons(x, cons(y, z))) => min(cons(x, z)) if!fac6220min(false, cons(x, cons(y, z))) => min(cons(y, z)) replace(x, y, nil) => nil replace(x, y, cons(z, u)) => if!fac6220replace(eq(x, z), x, y, cons(z, u)) if!fac6220replace(true, x, y, cons(z, u)) => cons(y, u) if!fac6220replace(false, x, y, cons(z, u)) => cons(z, replace(x, y, u)) sort(nil) => nil sort(cons(x, y)) => cons(min(cons(x, y)), sort(replace(min(cons(x, y)), x, y))) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) min(cons(0, nil)) => 0 min(cons(s(X), nil)) => s(X) min(cons(X, cons(Y, Z))) => if!fac6220min(le(X, Y), cons(X, cons(Y, Z))) if!fac6220min(true, cons(X, cons(Y, Z))) => min(cons(X, Z)) if!fac6220min(false, cons(X, cons(Y, Z))) => min(cons(Y, Z)) replace(X, Y, nil) => nil replace(X, Y, cons(Z, U)) => if!fac6220replace(eq(X, Z), X, Y, cons(Z, U)) if!fac6220replace(true, X, Y, cons(Z, U)) => cons(Y, U) if!fac6220replace(false, X, Y, cons(Z, U)) => cons(Z, replace(X, Y, U)) sort(nil) => nil sort(cons(X, Y)) => cons(min(cons(X, Y)), sort(replace(min(cons(X, Y)), X, Y))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) AND || (7) QDP || (8) UsableRulesProof [EQUIVALENT] || (9) QDP || (10) QReductionProof [EQUIVALENT] || (11) QDP || (12) QDPSizeChangeProof [EQUIVALENT] || (13) YES || (14) QDP || (15) UsableRulesProof [EQUIVALENT] || (16) QDP || (17) QReductionProof [EQUIVALENT] || (18) QDP || (19) QDPOrderProof [EQUIVALENT] || (20) QDP || (21) DependencyGraphProof [EQUIVALENT] || (22) TRUE || (23) QDP || (24) UsableRulesProof [EQUIVALENT] || (25) QDP || (26) QReductionProof [EQUIVALENT] || (27) QDP || (28) QDPSizeChangeProof [EQUIVALENT] || (29) YES || (30) QDP || (31) UsableRulesProof [EQUIVALENT] || (32) QDP || (33) QReductionProof [EQUIVALENT] || (34) QDP || (35) QDPSizeChangeProof [EQUIVALENT] || (36) YES || (37) QDP || (38) UsableRulesProof [EQUIVALENT] || (39) QDP || (40) QReductionProof [EQUIVALENT] || (41) QDP || (42) QDPOrderProof [EQUIVALENT] || (43) QDP || (44) PisEmptyProof [EQUIVALENT] || (45) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || LE(s(%X), s(%Y)) -> LE(%X, %Y) || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) || MIN(cons(%X, cons(%Y, %Z))) -> LE(%X, %Y) || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || REPLACE(%X, %Y, cons(%Z, %U)) -> EQ(%X, %Z) || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) || SORT(cons(%X, %Y)) -> MIN(cons(%X, %Y)) || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) || SORT(cons(%X, %Y)) -> REPLACE(min(cons(%X, %Y)), %X, %Y) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 4 less nodes. || ---------------------------------------- || || (6) || Complex Obligation (AND) || || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (9) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (10) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LE(s(%X), s(%Y)) -> LE(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (13) || YES || || ---------------------------------------- || || (14) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (15) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (16) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (17) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (18) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (19) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: || || POL( IF!FAC6220MIN_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 2} || POL( le_2(x_1, x_2) ) = 2 || POL( 0 ) = 2 || POL( true ) = 0 || POL( s_1(x_1) ) = 2 || POL( false ) = 0 || POL( MIN_1(x_1) ) = 2x_1 + 2 || POL( cons_2(x_1, x_2) ) = x_1 + 2x_2 + 2 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || || ---------------------------------------- || || (20) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (21) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. || ---------------------------------------- || || (22) || TRUE || || ---------------------------------------- || || (23) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (24) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (25) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (26) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (27) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (28) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (29) || YES || || ---------------------------------------- || || (30) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (31) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (32) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (33) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (34) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (35) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) || The graph contains the following edges 2 >= 1, 3 >= 2, 4 > 3 || || || *REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || The graph contains the following edges 1 >= 2, 2 >= 3, 3 >= 4 || || || ---------------------------------------- || || (36) || YES || || ---------------------------------------- || || (37) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (38) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (39) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) || || The TRS R consists of the following rules: || || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (40) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (41) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) || || The TRS R consists of the following rules: || || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (42) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(SORT(x_1)) = x_1 || POL(cons(x_1, x_2)) = 1 + x_2 || POL(eq(x_1, x_2)) = 0 || POL(false) = 0 || POL(if!fac6220min(x_1, x_2)) = 0 || POL(if!fac6220replace(x_1, x_2, x_3, x_4)) = x_4 || POL(le(x_1, x_2)) = 0 || POL(min(x_1)) = 0 || POL(nil) = 0 || POL(replace(x_1, x_2, x_3)) = x_3 || POL(s(x_1)) = 0 || POL(true) = 0 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || || || ---------------------------------------- || || (43) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (44) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (45) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) 2] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 3] filter#(F, cons(X, Y)) =#> F(X) 4] filter2#(true, F, X, Y) =#> filter#(F, Y) 5] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) min(cons(0, nil)) => 0 min(cons(s(X), nil)) => s(X) min(cons(X, cons(Y, Z))) => if!fac6220min(le(X, Y), cons(X, cons(Y, Z))) if!fac6220min(true, cons(X, cons(Y, Z))) => min(cons(X, Z)) if!fac6220min(false, cons(X, cons(Y, Z))) => min(cons(Y, Z)) replace(X, Y, nil) => nil replace(X, Y, cons(Z, U)) => if!fac6220replace(eq(X, Z), X, Y, cons(Z, U)) if!fac6220replace(true, X, Y, cons(Z, U)) => cons(Y, U) if!fac6220replace(false, X, Y, cons(Z, U)) => cons(Z, replace(X, Y, U)) sort(nil) => nil sort(cons(X, Y)) => cons(min(cons(X, Y)), sort(replace(min(cons(X, Y)), X, Y))) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) eq(0, 0) >= true eq(0, s(X)) >= false eq(s(X), 0) >= false eq(s(X), s(Y)) >= eq(X, Y) le(0, X) >= true le(s(X), 0) >= false le(s(X), s(Y)) >= le(X, Y) min(cons(0, nil)) >= 0 min(cons(s(X), nil)) >= s(X) min(cons(X, cons(Y, Z))) >= if!fac6220min(le(X, Y), cons(X, cons(Y, Z))) if!fac6220min(true, cons(X, cons(Y, Z))) >= min(cons(X, Z)) if!fac6220min(false, cons(X, cons(Y, Z))) >= min(cons(Y, Z)) replace(X, Y, nil) >= nil replace(X, Y, cons(Z, U)) >= if!fac6220replace(eq(X, Z), X, Y, cons(Z, U)) if!fac6220replace(true, X, Y, cons(Z, U)) >= cons(Y, U) if!fac6220replace(false, X, Y, cons(Z, U)) >= cons(Z, replace(X, Y, U)) sort(nil) >= nil sort(cons(X, Y)) >= cons(min(cons(X, Y)), sort(replace(min(cons(X, Y)), X, Y))) map(F, nil) >= nil map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, nil) >= nil filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 cons = \y0y1.1 + y1 + 2y0 eq = \y0y1.2 false = 0 filter = \G0y1.2y1 filter2 = \y0G1y2y3.1 + 2y2 + 2y3 filter2# = \y0G1y2y3.G1(y3) filter# = \G0y1.G0(y1) if!fac6220min = \y0y1.0 if!fac6220replace = \y0y1y2y3.y3 + 2y2 le = \y0y1.0 map = \G0y1.2y1 + 2y1G0(y1) map# = \G0y1.3 + 2G0(y1) min = \y0.0 nil = 0 replace = \y0y1y2.y2 + 2y1 s = \y0.0 sort = \y0.y0 true = 0 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 3 + 2F0(1 + x2 + 2x1) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 3 + 2F0(1 + x2 + 2x1) >= 3 + 2F0(x2) = [[map#(_F0, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = F0(1 + x2 + 2x1) >= F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = F0(1 + x2 + 2x1) >= F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = F0(x2) >= F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = F0(x2) >= F0(x2) = [[filter#(_F0, _x2)]] [[eq(0, 0)]] = 2 >= 0 = [[true]] [[eq(0, s(_x0))]] = 2 >= 0 = [[false]] [[eq(s(_x0), 0)]] = 2 >= 0 = [[false]] [[eq(s(_x0), s(_x1))]] = 2 >= 2 = [[eq(_x0, _x1)]] [[le(0, _x0)]] = 0 >= 0 = [[true]] [[le(s(_x0), 0)]] = 0 >= 0 = [[false]] [[le(s(_x0), s(_x1))]] = 0 >= 0 = [[le(_x0, _x1)]] [[min(cons(0, nil))]] = 0 >= 0 = [[0]] [[min(cons(s(_x0), nil))]] = 0 >= 0 = [[s(_x0)]] [[min(cons(_x0, cons(_x1, _x2)))]] = 0 >= 0 = [[if!fac6220min(le(_x0, _x1), cons(_x0, cons(_x1, _x2)))]] [[if!fac6220min(true, cons(_x0, cons(_x1, _x2)))]] = 0 >= 0 = [[min(cons(_x0, _x2))]] [[if!fac6220min(false, cons(_x0, cons(_x1, _x2)))]] = 0 >= 0 = [[min(cons(_x1, _x2))]] [[replace(_x0, _x1, nil)]] = 2x1 >= 0 = [[nil]] [[replace(_x0, _x1, cons(_x2, _x3))]] = 1 + x3 + 2x1 + 2x2 >= 1 + x3 + 2x1 + 2x2 = [[if!fac6220replace(eq(_x0, _x2), _x0, _x1, cons(_x2, _x3))]] [[if!fac6220replace(true, _x0, _x1, cons(_x2, _x3))]] = 1 + x3 + 2x1 + 2x2 >= 1 + x3 + 2x1 = [[cons(_x1, _x3)]] [[if!fac6220replace(false, _x0, _x1, cons(_x2, _x3))]] = 1 + x3 + 2x1 + 2x2 >= 1 + x3 + 2x1 + 2x2 = [[cons(_x2, replace(_x0, _x1, _x3))]] [[sort(nil)]] = 0 >= 0 = [[nil]] [[sort(cons(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[cons(min(cons(_x0, _x1)), sort(replace(min(cons(_x0, _x1)), _x0, _x1)))]] [[map(_F0, nil)]] = 0 >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 2 + 2x2 + 4x1 + 2x2F0(1 + x2 + 2x1) + 2F0(1 + x2 + 2x1) + 4x1F0(1 + x2 + 2x1) >= 1 + 2x2 + 2x2F0(x2) + 2max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, nil)]] = 0 >= 0 = [[nil]] [[filter(_F0, cons(_x1, _x2))]] = 2 + 2x2 + 4x1 >= 1 + 2x1 + 2x2 = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 1 + 2x1 + 2x2 >= 1 + 2x1 + 2x2 = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 1 + 2x1 + 2x2 >= 2x2 = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_1, R_0, minimal, formative), where P_1 consists of: map#(F, cons(X, Y)) =#> map#(F, Y) filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) =#> F(X) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 3, 4 * 2 : 0, 1, 2, 3, 4 * 3 : 1, 2 * 4 : 1, 2 This graph has the following strongly connected components: P_2: map#(F, cons(X, Y)) =#> map#(F, Y) P_3: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) =#> F(X) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_1, R_0, m, f) by (P_2, R_0, m, f) and (P_3, R_0, m, f). Thus, the original system is terminating if each of (P_2, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) eq(0, 0) >= true eq(0, s(X)) >= false eq(s(X), 0) >= false eq(s(X), s(Y)) >= eq(X, Y) le(0, X) >= true le(s(X), 0) >= false le(s(X), s(Y)) >= le(X, Y) min(cons(0, nil)) >= 0 min(cons(s(X), nil)) >= s(X) min(cons(X, cons(Y, Z))) >= if!fac6220min(le(X, Y), cons(X, cons(Y, Z))) if!fac6220min(true, cons(X, cons(Y, Z))) >= min(cons(X, Z)) if!fac6220min(false, cons(X, cons(Y, Z))) >= min(cons(Y, Z)) replace(X, Y, nil) >= nil replace(X, Y, cons(Z, U)) >= if!fac6220replace(eq(X, Z), X, Y, cons(Z, U)) if!fac6220replace(true, X, Y, cons(Z, U)) >= cons(Y, U) if!fac6220replace(false, X, Y, cons(Z, U)) >= cons(Z, replace(X, Y, U)) sort(nil) >= nil sort(cons(X, Y)) >= cons(min(cons(X, Y)), sort(replace(min(cons(X, Y)), X, Y))) map(F, nil) >= nil map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, nil) >= nil filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 cons = \y0y1.1 + y0 + y1 eq = \y0y1.2 false = 0 filter = \G0y1.2y1 filter2 = \y0G1y2y3.2 + y2 + 2y3 filter2# = \y0G1y2y3.y3 + 2y3G1(y3) filter# = \G0y1.y1 + 2y1G0(y1) if!fac6220min = \y0y1.0 if!fac6220replace = \y0y1y2y3.y2 + y3 le = \y0y1.2 map = \G0y1.2y1 + y1G0(y1) min = \y0.0 nil = 0 replace = \y0y1y2.y1 + y2 s = \y0.0 sort = \y0.2 + 2y0 true = 0 Using this interpretation, the requirements translate to: [[filter#(_F0, cons(_x1, _x2))]] = 1 + x1 + x2 + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(1 + x1 + x2) > x2 + 2x2F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 1 + x1 + x2 + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(1 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = x2 + 2x2F0(x2) >= x2 + 2x2F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = x2 + 2x2F0(x2) >= x2 + 2x2F0(x2) = [[filter#(_F0, _x2)]] [[eq(0, 0)]] = 2 >= 0 = [[true]] [[eq(0, s(_x0))]] = 2 >= 0 = [[false]] [[eq(s(_x0), 0)]] = 2 >= 0 = [[false]] [[eq(s(_x0), s(_x1))]] = 2 >= 2 = [[eq(_x0, _x1)]] [[le(0, _x0)]] = 2 >= 0 = [[true]] [[le(s(_x0), 0)]] = 2 >= 0 = [[false]] [[le(s(_x0), s(_x1))]] = 2 >= 2 = [[le(_x0, _x1)]] [[min(cons(0, nil))]] = 0 >= 0 = [[0]] [[min(cons(s(_x0), nil))]] = 0 >= 0 = [[s(_x0)]] [[min(cons(_x0, cons(_x1, _x2)))]] = 0 >= 0 = [[if!fac6220min(le(_x0, _x1), cons(_x0, cons(_x1, _x2)))]] [[if!fac6220min(true, cons(_x0, cons(_x1, _x2)))]] = 0 >= 0 = [[min(cons(_x0, _x2))]] [[if!fac6220min(false, cons(_x0, cons(_x1, _x2)))]] = 0 >= 0 = [[min(cons(_x1, _x2))]] [[replace(_x0, _x1, nil)]] = x1 >= 0 = [[nil]] [[replace(_x0, _x1, cons(_x2, _x3))]] = 1 + x1 + x2 + x3 >= 1 + x1 + x2 + x3 = [[if!fac6220replace(eq(_x0, _x2), _x0, _x1, cons(_x2, _x3))]] [[if!fac6220replace(true, _x0, _x1, cons(_x2, _x3))]] = 1 + x1 + x2 + x3 >= 1 + x1 + x3 = [[cons(_x1, _x3)]] [[if!fac6220replace(false, _x0, _x1, cons(_x2, _x3))]] = 1 + x1 + x2 + x3 >= 1 + x1 + x2 + x3 = [[cons(_x2, replace(_x0, _x1, _x3))]] [[sort(nil)]] = 2 >= 0 = [[nil]] [[sort(cons(_x0, _x1))]] = 4 + 2x0 + 2x1 >= 3 + 2x0 + 2x1 = [[cons(min(cons(_x0, _x1)), sort(replace(min(cons(_x0, _x1)), _x0, _x1)))]] [[map(_F0, nil)]] = 0 >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 2 + 2x1 + 2x2 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) >= 1 + 2x2 + x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, nil)]] = 0 >= 0 = [[nil]] [[filter(_F0, cons(_x1, _x2))]] = 2 + 2x1 + 2x2 >= 2 + x1 + 2x2 = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 2 + x1 + 2x2 >= 1 + x1 + 2x2 = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 2 + x1 + 2x2 >= 2x2 = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_3, R_0, minimal, formative) by (P_4, R_0, minimal, formative), where P_4 consists of: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_2, R_0, minimal, formative) and (P_4, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.