We consider the system Applicative_first_order_05__#3.10. Alphabet: 0 : [] --> b add : [b * c] --> c app : [c * c] --> c eq : [b * b] --> a false : [] --> a filter : [b -> a * c] --> c filter2 : [a * b -> a * b * c] --> c if!fac6220min : [a * c] --> b if!fac6220minsort : [a * c * c] --> c if!fac6220rm : [a * b * c] --> c le : [b * b] --> a map : [b -> b * c] --> c min : [c] --> b minsort : [c * c] --> c nil : [] --> c rm : [b * c] --> c s : [b] --> b true : [] --> a Rules: eq(0, 0) => true eq(0, s(x)) => false eq(s(x), 0) => false eq(s(x), s(y)) => eq(x, y) le(0, x) => true le(s(x), 0) => false le(s(x), s(y)) => le(x, y) app(nil, x) => x app(add(x, y), z) => add(x, app(y, z)) min(add(x, nil)) => x min(add(x, add(y, z))) => if!fac6220min(le(x, y), add(x, add(y, z))) if!fac6220min(true, add(x, add(y, z))) => min(add(x, z)) if!fac6220min(false, add(x, add(y, z))) => min(add(y, z)) rm(x, nil) => nil rm(x, add(y, z)) => if!fac6220rm(eq(x, y), x, add(y, z)) if!fac6220rm(true, x, add(y, z)) => rm(x, z) if!fac6220rm(false, x, add(y, z)) => add(y, rm(x, z)) minsort(nil, nil) => nil minsort(add(x, y), z) => if!fac6220minsort(eq(x, min(add(x, y))), add(x, y), z) if!fac6220minsort(true, add(x, y), z) => add(x, minsort(app(rm(x, y), z), nil)) if!fac6220minsort(false, add(x, y), z) => minsort(y, add(x, z)) map(f, nil) => nil map(f, add(x, y)) => add(f x, map(f, y)) filter(f, nil) => nil filter(f, add(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => add(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) app(nil, X) => X app(add(X, Y), Z) => add(X, app(Y, Z)) min(add(X, nil)) => X min(add(X, add(Y, Z))) => if!fac6220min(le(X, Y), add(X, add(Y, Z))) if!fac6220min(true, add(X, add(Y, Z))) => min(add(X, Z)) if!fac6220min(false, add(X, add(Y, Z))) => min(add(Y, Z)) rm(X, nil) => nil rm(X, add(Y, Z)) => if!fac6220rm(eq(X, Y), X, add(Y, Z)) if!fac6220rm(true, X, add(Y, Z)) => rm(X, Z) if!fac6220rm(false, X, add(Y, Z)) => add(Y, rm(X, Z)) minsort(nil, nil) => nil minsort(add(X, Y), Z) => if!fac6220minsort(eq(X, min(add(X, Y))), add(X, Y), Z) if!fac6220minsort(true, add(X, Y), Z) => add(X, minsort(app(rm(X, Y), Z), nil)) if!fac6220minsort(false, add(X, Y), Z) => minsort(Y, add(X, Z)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) AND || (7) QDP || (8) UsableRulesProof [EQUIVALENT] || (9) QDP || (10) QReductionProof [EQUIVALENT] || (11) QDP || (12) QDPSizeChangeProof [EQUIVALENT] || (13) YES || (14) QDP || (15) UsableRulesProof [EQUIVALENT] || (16) QDP || (17) QReductionProof [EQUIVALENT] || (18) QDP || (19) QDPSizeChangeProof [EQUIVALENT] || (20) YES || (21) QDP || (22) UsableRulesProof [EQUIVALENT] || (23) QDP || (24) QReductionProof [EQUIVALENT] || (25) QDP || (26) QDPOrderProof [EQUIVALENT] || (27) QDP || (28) DependencyGraphProof [EQUIVALENT] || (29) TRUE || (30) QDP || (31) UsableRulesProof [EQUIVALENT] || (32) QDP || (33) QReductionProof [EQUIVALENT] || (34) QDP || (35) QDPSizeChangeProof [EQUIVALENT] || (36) YES || (37) QDP || (38) UsableRulesProof [EQUIVALENT] || (39) QDP || (40) QReductionProof [EQUIVALENT] || (41) QDP || (42) QDPSizeChangeProof [EQUIVALENT] || (43) YES || (44) QDP || (45) UsableRulesProof [EQUIVALENT] || (46) QDP || (47) QReductionProof [EQUIVALENT] || (48) QDP || (49) QDPOrderProof [EQUIVALENT] || (50) QDP || (51) UsableRulesProof [EQUIVALENT] || (52) QDP || (53) QReductionProof [EQUIVALENT] || (54) QDP || (55) QDPSizeChangeProof [EQUIVALENT] || (56) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || minsort(nil, nil) -> nil || minsort(add(%X, %Y), %Z) -> if!fac6220minsort(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || if!fac6220minsort(true, add(%X, %Y), %Z) -> add(%X, minsort(app(rm(%X, %Y), %Z), nil)) || if!fac6220minsort(false, add(%X, %Y), %Z) -> minsort(%Y, add(%X, %Z)) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || minsort(nil, nil) -> nil || minsort(add(%X, %Y), %Z) -> if!fac6220minsort(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || if!fac6220minsort(true, add(%X, %Y), %Z) -> add(%X, minsort(app(rm(%X, %Y), %Z), nil)) || if!fac6220minsort(false, add(%X, %Y), %Z) -> minsort(%Y, add(%X, %Z)) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || LE(s(%X), s(%Y)) -> LE(%X, %Y) || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || MIN(add(%X, add(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), add(%X, add(%Y, %Z))) || MIN(add(%X, add(%Y, %Z))) -> LE(%X, %Y) || IF!FAC6220MIN(true, add(%X, add(%Y, %Z))) -> MIN(add(%X, %Z)) || IF!FAC6220MIN(false, add(%X, add(%Y, %Z))) -> MIN(add(%Y, %Z)) || RM(%X, add(%Y, %Z)) -> IF!FAC6220RM(eq(%X, %Y), %X, add(%Y, %Z)) || RM(%X, add(%Y, %Z)) -> EQ(%X, %Y) || IF!FAC6220RM(true, %X, add(%Y, %Z)) -> RM(%X, %Z) || IF!FAC6220RM(false, %X, add(%Y, %Z)) -> RM(%X, %Z) || MINSORT(add(%X, %Y), %Z) -> IF!FAC6220MINSORT(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || MINSORT(add(%X, %Y), %Z) -> EQ(%X, min(add(%X, %Y))) || MINSORT(add(%X, %Y), %Z) -> MIN(add(%X, %Y)) || IF!FAC6220MINSORT(true, add(%X, %Y), %Z) -> MINSORT(app(rm(%X, %Y), %Z), nil) || IF!FAC6220MINSORT(true, add(%X, %Y), %Z) -> APP(rm(%X, %Y), %Z) || IF!FAC6220MINSORT(true, add(%X, %Y), %Z) -> RM(%X, %Y) || IF!FAC6220MINSORT(false, add(%X, %Y), %Z) -> MINSORT(%Y, add(%X, %Z)) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || minsort(nil, nil) -> nil || minsort(add(%X, %Y), %Z) -> if!fac6220minsort(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || if!fac6220minsort(true, add(%X, %Y), %Z) -> add(%X, minsort(app(rm(%X, %Y), %Z), nil)) || if!fac6220minsort(false, add(%X, %Y), %Z) -> minsort(%Y, add(%X, %Z)) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 6 less nodes. || ---------------------------------------- || || (6) || Complex Obligation (AND) || || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || minsort(nil, nil) -> nil || minsort(add(%X, %Y), %Z) -> if!fac6220minsort(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || if!fac6220minsort(true, add(%X, %Y), %Z) -> add(%X, minsort(app(rm(%X, %Y), %Z), nil)) || if!fac6220minsort(false, add(%X, %Y), %Z) -> minsort(%Y, add(%X, %Z)) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (9) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || || R is empty. || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (10) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || The graph contains the following edges 1 > 1, 2 >= 2 || || || ---------------------------------------- || || (13) || YES || || ---------------------------------------- || || (14) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || minsort(nil, nil) -> nil || minsort(add(%X, %Y), %Z) -> if!fac6220minsort(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || if!fac6220minsort(true, add(%X, %Y), %Z) -> add(%X, minsort(app(rm(%X, %Y), %Z), nil)) || if!fac6220minsort(false, add(%X, %Y), %Z) -> minsort(%Y, add(%X, %Z)) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (15) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (16) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (17) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || || ---------------------------------------- || || (18) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (19) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LE(s(%X), s(%Y)) -> LE(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (20) || YES || || ---------------------------------------- || || (21) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(add(%X, add(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), add(%X, add(%Y, %Z))) || IF!FAC6220MIN(true, add(%X, add(%Y, %Z))) -> MIN(add(%X, %Z)) || IF!FAC6220MIN(false, add(%X, add(%Y, %Z))) -> MIN(add(%Y, %Z)) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || minsort(nil, nil) -> nil || minsort(add(%X, %Y), %Z) -> if!fac6220minsort(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || if!fac6220minsort(true, add(%X, %Y), %Z) -> add(%X, minsort(app(rm(%X, %Y), %Z), nil)) || if!fac6220minsort(false, add(%X, %Y), %Z) -> minsort(%Y, add(%X, %Z)) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (22) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (23) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(add(%X, add(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), add(%X, add(%Y, %Z))) || IF!FAC6220MIN(true, add(%X, add(%Y, %Z))) -> MIN(add(%X, %Z)) || IF!FAC6220MIN(false, add(%X, add(%Y, %Z))) -> MIN(add(%Y, %Z)) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (24) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || || ---------------------------------------- || || (25) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(add(%X, add(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), add(%X, add(%Y, %Z))) || IF!FAC6220MIN(true, add(%X, add(%Y, %Z))) -> MIN(add(%X, %Z)) || IF!FAC6220MIN(false, add(%X, add(%Y, %Z))) -> MIN(add(%Y, %Z)) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (26) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || IF!FAC6220MIN(true, add(%X, add(%Y, %Z))) -> MIN(add(%X, %Z)) || IF!FAC6220MIN(false, add(%X, add(%Y, %Z))) -> MIN(add(%Y, %Z)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: || || POL( IF!FAC6220MIN_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 2} || POL( le_2(x_1, x_2) ) = 2 || POL( 0 ) = 2 || POL( true ) = 0 || POL( s_1(x_1) ) = 2 || POL( false ) = 0 || POL( MIN_1(x_1) ) = 2x_1 + 2 || POL( add_2(x_1, x_2) ) = x_1 + 2x_2 + 2 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || || ---------------------------------------- || || (27) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(add(%X, add(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), add(%X, add(%Y, %Z))) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (28) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. || ---------------------------------------- || || (29) || TRUE || || ---------------------------------------- || || (30) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || minsort(nil, nil) -> nil || minsort(add(%X, %Y), %Z) -> if!fac6220minsort(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || if!fac6220minsort(true, add(%X, %Y), %Z) -> add(%X, minsort(app(rm(%X, %Y), %Z), nil)) || if!fac6220minsort(false, add(%X, %Y), %Z) -> minsort(%Y, add(%X, %Z)) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (31) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (32) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (33) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || || ---------------------------------------- || || (34) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (35) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (36) || YES || || ---------------------------------------- || || (37) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || RM(%X, add(%Y, %Z)) -> IF!FAC6220RM(eq(%X, %Y), %X, add(%Y, %Z)) || IF!FAC6220RM(true, %X, add(%Y, %Z)) -> RM(%X, %Z) || IF!FAC6220RM(false, %X, add(%Y, %Z)) -> RM(%X, %Z) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || minsort(nil, nil) -> nil || minsort(add(%X, %Y), %Z) -> if!fac6220minsort(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || if!fac6220minsort(true, add(%X, %Y), %Z) -> add(%X, minsort(app(rm(%X, %Y), %Z), nil)) || if!fac6220minsort(false, add(%X, %Y), %Z) -> minsort(%Y, add(%X, %Z)) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (38) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (39) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || RM(%X, add(%Y, %Z)) -> IF!FAC6220RM(eq(%X, %Y), %X, add(%Y, %Z)) || IF!FAC6220RM(true, %X, add(%Y, %Z)) -> RM(%X, %Z) || IF!FAC6220RM(false, %X, add(%Y, %Z)) -> RM(%X, %Z) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (40) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || || ---------------------------------------- || || (41) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || RM(%X, add(%Y, %Z)) -> IF!FAC6220RM(eq(%X, %Y), %X, add(%Y, %Z)) || IF!FAC6220RM(true, %X, add(%Y, %Z)) -> RM(%X, %Z) || IF!FAC6220RM(false, %X, add(%Y, %Z)) -> RM(%X, %Z) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (42) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *RM(%X, add(%Y, %Z)) -> IF!FAC6220RM(eq(%X, %Y), %X, add(%Y, %Z)) || The graph contains the following edges 1 >= 2, 2 >= 3 || || || *IF!FAC6220RM(true, %X, add(%Y, %Z)) -> RM(%X, %Z) || The graph contains the following edges 2 >= 1, 3 > 2 || || || *IF!FAC6220RM(false, %X, add(%Y, %Z)) -> RM(%X, %Z) || The graph contains the following edges 2 >= 1, 3 > 2 || || || ---------------------------------------- || || (43) || YES || || ---------------------------------------- || || (44) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || IF!FAC6220MINSORT(true, add(%X, %Y), %Z) -> MINSORT(app(rm(%X, %Y), %Z), nil) || MINSORT(add(%X, %Y), %Z) -> IF!FAC6220MINSORT(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || IF!FAC6220MINSORT(false, add(%X, %Y), %Z) -> MINSORT(%Y, add(%X, %Z)) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || minsort(nil, nil) -> nil || minsort(add(%X, %Y), %Z) -> if!fac6220minsort(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || if!fac6220minsort(true, add(%X, %Y), %Z) -> add(%X, minsort(app(rm(%X, %Y), %Z), nil)) || if!fac6220minsort(false, add(%X, %Y), %Z) -> minsort(%Y, add(%X, %Z)) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (45) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (46) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || IF!FAC6220MINSORT(true, add(%X, %Y), %Z) -> MINSORT(app(rm(%X, %Y), %Z), nil) || MINSORT(add(%X, %Y), %Z) -> IF!FAC6220MINSORT(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || IF!FAC6220MINSORT(false, add(%X, %Y), %Z) -> MINSORT(%Y, add(%X, %Z)) || || The TRS R consists of the following rules: || || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (47) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minsort(nil, nil) || minsort(add(x0, x1), x2) || if!fac6220minsort(true, add(x0, x1), x2) || if!fac6220minsort(false, add(x0, x1), x2) || || || ---------------------------------------- || || (48) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || IF!FAC6220MINSORT(true, add(%X, %Y), %Z) -> MINSORT(app(rm(%X, %Y), %Z), nil) || MINSORT(add(%X, %Y), %Z) -> IF!FAC6220MINSORT(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || IF!FAC6220MINSORT(false, add(%X, %Y), %Z) -> MINSORT(%Y, add(%X, %Z)) || || The TRS R consists of the following rules: || || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (49) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || IF!FAC6220MINSORT(true, add(%X, %Y), %Z) -> MINSORT(app(rm(%X, %Y), %Z), nil) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(IF!FAC6220MINSORT(x_1, x_2, x_3)) = x_2 + x_3 || POL(MINSORT(x_1, x_2)) = x_1 + x_2 || POL(add(x_1, x_2)) = 1 + x_2 || POL(app(x_1, x_2)) = x_1 + x_2 || POL(eq(x_1, x_2)) = 0 || POL(false) = 0 || POL(if!fac6220min(x_1, x_2)) = 0 || POL(if!fac6220rm(x_1, x_2, x_3)) = x_3 || POL(le(x_1, x_2)) = 0 || POL(min(x_1)) = 0 || POL(nil) = 0 || POL(rm(x_1, x_2)) = x_2 || POL(s(x_1)) = 0 || POL(true) = 0 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || || || ---------------------------------------- || || (50) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINSORT(add(%X, %Y), %Z) -> IF!FAC6220MINSORT(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || IF!FAC6220MINSORT(false, add(%X, %Y), %Z) -> MINSORT(%Y, add(%X, %Z)) || || The TRS R consists of the following rules: || || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || rm(%X, nil) -> nil || rm(%X, add(%Y, %Z)) -> if!fac6220rm(eq(%X, %Y), %X, add(%Y, %Z)) || if!fac6220rm(true, %X, add(%Y, %Z)) -> rm(%X, %Z) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || if!fac6220rm(false, %X, add(%Y, %Z)) -> add(%Y, rm(%X, %Z)) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (51) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (52) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINSORT(add(%X, %Y), %Z) -> IF!FAC6220MINSORT(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || IF!FAC6220MINSORT(false, add(%X, %Y), %Z) -> MINSORT(%Y, add(%X, %Z)) || || The TRS R consists of the following rules: || || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (53) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || app(nil, x0) || app(add(x0, x1), x2) || rm(x0, nil) || rm(x0, add(x1, x2)) || if!fac6220rm(true, x0, add(x1, x2)) || if!fac6220rm(false, x0, add(x1, x2)) || || || ---------------------------------------- || || (54) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINSORT(add(%X, %Y), %Z) -> IF!FAC6220MINSORT(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || IF!FAC6220MINSORT(false, add(%X, %Y), %Z) -> MINSORT(%Y, add(%X, %Z)) || || The TRS R consists of the following rules: || || min(add(%X, nil)) -> %X || min(add(%X, add(%Y, %Z))) -> if!fac6220min(le(%X, %Y), add(%X, add(%Y, %Z))) || if!fac6220min(true, add(%X, add(%Y, %Z))) -> min(add(%X, %Z)) || if!fac6220min(false, add(%X, add(%Y, %Z))) -> min(add(%Y, %Z)) || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(add(x0, nil)) || min(add(x0, add(x1, x2))) || if!fac6220min(true, add(x0, add(x1, x2))) || if!fac6220min(false, add(x0, add(x1, x2))) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (55) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *IF!FAC6220MINSORT(false, add(%X, %Y), %Z) -> MINSORT(%Y, add(%X, %Z)) || The graph contains the following edges 2 > 1 || || || *MINSORT(add(%X, %Y), %Z) -> IF!FAC6220MINSORT(eq(%X, min(add(%X, %Y))), add(%X, %Y), %Z) || The graph contains the following edges 1 >= 2, 2 >= 3 || || || ---------------------------------------- || || (56) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, add(X, Y)) =#> F(X) 1] map#(F, add(X, Y)) =#> map#(F, Y) 2] filter#(F, add(X, Y)) =#> filter2#(F X, F, X, Y) 3] filter#(F, add(X, Y)) =#> F(X) 4] filter2#(true, F, X, Y) =#> filter#(F, Y) 5] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) app(nil, X) => X app(add(X, Y), Z) => add(X, app(Y, Z)) min(add(X, nil)) => X min(add(X, add(Y, Z))) => if!fac6220min(le(X, Y), add(X, add(Y, Z))) if!fac6220min(true, add(X, add(Y, Z))) => min(add(X, Z)) if!fac6220min(false, add(X, add(Y, Z))) => min(add(Y, Z)) rm(X, nil) => nil rm(X, add(Y, Z)) => if!fac6220rm(eq(X, Y), X, add(Y, Z)) if!fac6220rm(true, X, add(Y, Z)) => rm(X, Z) if!fac6220rm(false, X, add(Y, Z)) => add(Y, rm(X, Z)) minsort(nil, nil) => nil minsort(add(X, Y), Z) => if!fac6220minsort(eq(X, min(add(X, Y))), add(X, Y), Z) if!fac6220minsort(true, add(X, Y), Z) => add(X, minsort(app(rm(X, Y), Z), nil)) if!fac6220minsort(false, add(X, Y), Z) => minsort(Y, add(X, Z)) map(F, nil) => nil map(F, add(X, Y)) => add(F X, map(F, Y)) filter(F, nil) => nil filter(F, add(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => add(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, add(X, Y)) >? F(X) map#(F, add(X, Y)) >? map#(F, Y) filter#(F, add(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, add(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) eq(0, 0) >= true eq(0, s(X)) >= false eq(s(X), 0) >= false eq(s(X), s(Y)) >= eq(X, Y) le(0, X) >= true le(s(X), 0) >= false le(s(X), s(Y)) >= le(X, Y) app(nil, X) >= X app(add(X, Y), Z) >= add(X, app(Y, Z)) min(add(X, nil)) >= X min(add(X, add(Y, Z))) >= if!fac6220min(le(X, Y), add(X, add(Y, Z))) if!fac6220min(true, add(X, add(Y, Z))) >= min(add(X, Z)) if!fac6220min(false, add(X, add(Y, Z))) >= min(add(Y, Z)) rm(X, nil) >= nil rm(X, add(Y, Z)) >= if!fac6220rm(eq(X, Y), X, add(Y, Z)) if!fac6220rm(true, X, add(Y, Z)) >= rm(X, Z) if!fac6220rm(false, X, add(Y, Z)) >= add(Y, rm(X, Z)) minsort(nil, nil) >= nil minsort(add(X, Y), Z) >= if!fac6220minsort(eq(X, min(add(X, Y))), add(X, Y), Z) if!fac6220minsort(true, add(X, Y), Z) >= add(X, minsort(app(rm(X, Y), Z), nil)) if!fac6220minsort(false, add(X, Y), Z) >= minsort(Y, add(X, Z)) map(F, nil) >= nil map(F, add(X, Y)) >= add(F X, map(F, Y)) filter(F, nil) >= nil filter(F, add(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= add(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 3 add = \y0y1.1 + y1 + 2y0 app = \y0y1.y0 + y1 eq = \y0y1.2 false = 0 filter = \G0y1.y1 + G0(0) + G0(y1) + 2y1G0(y1) filter2 = \y0G1y2y3.1 + y3 + 2y2 + G1(0) + G1(y3) + 2y3G1(y3) filter2# = \y0G1y2y3.1 + y3G1(y3) filter# = \G0y1.1 + y1G0(y1) if!fac6220min = \y0y1.2y1 if!fac6220minsort = \y0y1y2.2y1 + 2y2 if!fac6220rm = \y0y1y2.y1 + y2 le = \y0y1.y1 map = \G0y1.3 + y1 + 2y1G0(y1) + 2G0(y1) map# = \G0y1.3 + G0(y1) min = \y0.2y0 minsort = \y0y1.2y0 + 2y1 nil = 0 rm = \y0y1.y0 + y1 s = \y0.3 + 2y0 true = 0 Using this interpretation, the requirements translate to: [[map#(_F0, add(_x1, _x2))]] = 3 + F0(1 + x2 + 2x1) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, add(_x1, _x2))]] = 3 + F0(1 + x2 + 2x1) >= 3 + F0(x2) = [[map#(_F0, _x2)]] [[filter#(_F0, add(_x1, _x2))]] = 1 + F0(1 + x2 + 2x1) + 2x1F0(1 + x2 + 2x1) + x2F0(1 + x2 + 2x1) >= 1 + x2F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, add(_x1, _x2))]] = 1 + F0(1 + x2 + 2x1) + 2x1F0(1 + x2 + 2x1) + x2F0(1 + x2 + 2x1) > F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = 1 + x2F0(x2) >= 1 + x2F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = 1 + x2F0(x2) >= 1 + x2F0(x2) = [[filter#(_F0, _x2)]] [[eq(0, 0)]] = 2 >= 0 = [[true]] [[eq(0, s(_x0))]] = 2 >= 0 = [[false]] [[eq(s(_x0), 0)]] = 2 >= 0 = [[false]] [[eq(s(_x0), s(_x1))]] = 2 >= 2 = [[eq(_x0, _x1)]] [[le(0, _x0)]] = x0 >= 0 = [[true]] [[le(s(_x0), 0)]] = 3 >= 0 = [[false]] [[le(s(_x0), s(_x1))]] = 3 + 2x1 >= x1 = [[le(_x0, _x1)]] [[app(nil, _x0)]] = x0 >= x0 = [[_x0]] [[app(add(_x0, _x1), _x2)]] = 1 + x1 + x2 + 2x0 >= 1 + x1 + x2 + 2x0 = [[add(_x0, app(_x1, _x2))]] [[min(add(_x0, nil))]] = 2 + 4x0 >= x0 = [[_x0]] [[min(add(_x0, add(_x1, _x2)))]] = 4 + 2x2 + 4x0 + 4x1 >= 4 + 2x2 + 4x0 + 4x1 = [[if!fac6220min(le(_x0, _x1), add(_x0, add(_x1, _x2)))]] [[if!fac6220min(true, add(_x0, add(_x1, _x2)))]] = 4 + 2x2 + 4x0 + 4x1 >= 2 + 2x2 + 4x0 = [[min(add(_x0, _x2))]] [[if!fac6220min(false, add(_x0, add(_x1, _x2)))]] = 4 + 2x2 + 4x0 + 4x1 >= 2 + 2x2 + 4x1 = [[min(add(_x1, _x2))]] [[rm(_x0, nil)]] = x0 >= 0 = [[nil]] [[rm(_x0, add(_x1, _x2))]] = 1 + x0 + x2 + 2x1 >= 1 + x0 + x2 + 2x1 = [[if!fac6220rm(eq(_x0, _x1), _x0, add(_x1, _x2))]] [[if!fac6220rm(true, _x0, add(_x1, _x2))]] = 1 + x0 + x2 + 2x1 >= x0 + x2 = [[rm(_x0, _x2)]] [[if!fac6220rm(false, _x0, add(_x1, _x2))]] = 1 + x0 + x2 + 2x1 >= 1 + x0 + x2 + 2x1 = [[add(_x1, rm(_x0, _x2))]] [[minsort(nil, nil)]] = 0 >= 0 = [[nil]] [[minsort(add(_x0, _x1), _x2)]] = 2 + 2x1 + 2x2 + 4x0 >= 2 + 2x1 + 2x2 + 4x0 = [[if!fac6220minsort(eq(_x0, min(add(_x0, _x1))), add(_x0, _x1), _x2)]] [[if!fac6220minsort(true, add(_x0, _x1), _x2)]] = 2 + 2x1 + 2x2 + 4x0 >= 1 + 2x1 + 2x2 + 4x0 = [[add(_x0, minsort(app(rm(_x0, _x1), _x2), nil))]] [[if!fac6220minsort(false, add(_x0, _x1), _x2)]] = 2 + 2x1 + 2x2 + 4x0 >= 2 + 2x1 + 2x2 + 4x0 = [[minsort(_x1, add(_x0, _x2))]] [[map(_F0, nil)]] = 3 + 2F0(0) >= 0 = [[nil]] [[map(_F0, add(_x1, _x2))]] = 4 + x2 + 2x1 + 2x2F0(1 + x2 + 2x1) + 4x1F0(1 + x2 + 2x1) + 4F0(1 + x2 + 2x1) >= 4 + x2 + 2x2F0(x2) + 2F0(x2) + 2max(x1, F0(x1)) = [[add(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, nil)]] = 2F0(0) >= 0 = [[nil]] [[filter(_F0, add(_x1, _x2))]] = 1 + x2 + 2x1 + F0(0) + 2x2F0(1 + x2 + 2x1) + 3F0(1 + x2 + 2x1) + 4x1F0(1 + x2 + 2x1) >= 1 + x2 + 2x1 + F0(0) + F0(x2) + 2x2F0(x2) = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 1 + x2 + 2x1 + F0(0) + F0(x2) + 2x2F0(x2) >= 1 + x2 + 2x1 + F0(0) + F0(x2) + 2x2F0(x2) = [[add(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 1 + x2 + 2x1 + F0(0) + F0(x2) + 2x2F0(x2) >= x2 + F0(0) + F0(x2) + 2x2F0(x2) = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_1, R_0, minimal, formative), where P_1 consists of: map#(F, add(X, Y)) =#> map#(F, Y) filter#(F, add(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_2: map#(F, add(X, Y)) =#> map#(F, Y) P_3: filter#(F, add(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_1, R_0, m, f) by (P_2, R_0, m, f) and (P_3, R_0, m, f). Thus, the original system is terminating if each of (P_2, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, add(X, Y))) = add(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_3, R_0, minimal, f) by (P_4, R_0, minimal, f), where P_4 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_2, R_0, minimal, formative) and (P_4, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, add(X, Y))) = add(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.