We consider the system Applicative_first_order_05__#3.38. Alphabet: 0 : [] --> c cons : [c * d] --> d false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d map : [c -> c * d] --> d nil : [] --> d rev : [d] --> d rev1 : [c * d] --> c rev2 : [c * d] --> d s : [a] --> c true : [] --> b Rules: rev(nil) => nil rev(cons(x, y)) => cons(rev1(x, y), rev2(x, y)) rev1(0, nil) => 0 rev1(s(x), nil) => s(x) rev1(x, cons(y, z)) => rev1(y, z) rev2(x, nil) => nil rev2(x, cons(y, z)) => rev(cons(x, rev2(y, z))) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: rev(nil) => nil rev(cons(X, Y)) => cons(rev1(X, Y), rev2(X, Y)) rev1(0, nil) => 0 rev1(s(X), nil) => s(X) rev1(X, cons(Y, Z)) => rev1(Y, Z) rev2(X, nil) => nil rev2(X, cons(Y, Z)) => rev(cons(X, rev2(Y, Z))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) AND || (7) QDP || (8) UsableRulesProof [EQUIVALENT] || (9) QDP || (10) QReductionProof [EQUIVALENT] || (11) QDP || (12) QDPSizeChangeProof [EQUIVALENT] || (13) YES || (14) QDP || (15) UsableRulesProof [EQUIVALENT] || (16) QDP || (17) QDPOrderProof [EQUIVALENT] || (18) QDP || (19) DependencyGraphProof [EQUIVALENT] || (20) TRUE || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || rev(nil) -> nil || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) || rev1(0, nil) -> 0 || rev1(s(%X), nil) -> s(%X) || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) || rev2(%X, nil) -> nil || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || rev(nil) -> nil || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) || rev1(0, nil) -> 0 || rev1(s(%X), nil) -> s(%X) || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) || rev2(%X, nil) -> nil || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) || || The set Q consists of the following terms: || || rev(nil) || rev(cons(x0, x1)) || rev1(0, nil) || rev1(s(x0), nil) || rev1(x0, cons(x1, x2)) || rev2(x0, nil) || rev2(x0, cons(x1, x2)) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REV(cons(%X, %Y)) -> REV1(%X, %Y) || REV(cons(%X, %Y)) -> REV2(%X, %Y) || REV1(%X, cons(%Y, %Z)) -> REV1(%Y, %Z) || REV2(%X, cons(%Y, %Z)) -> REV(cons(%X, rev2(%Y, %Z))) || REV2(%X, cons(%Y, %Z)) -> REV2(%Y, %Z) || || The TRS R consists of the following rules: || || rev(nil) -> nil || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) || rev1(0, nil) -> 0 || rev1(s(%X), nil) -> s(%X) || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) || rev2(%X, nil) -> nil || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) || || The set Q consists of the following terms: || || rev(nil) || rev(cons(x0, x1)) || rev1(0, nil) || rev1(s(x0), nil) || rev1(x0, cons(x1, x2)) || rev2(x0, nil) || rev2(x0, cons(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. || ---------------------------------------- || || (6) || Complex Obligation (AND) || || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REV1(%X, cons(%Y, %Z)) -> REV1(%Y, %Z) || || The TRS R consists of the following rules: || || rev(nil) -> nil || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) || rev1(0, nil) -> 0 || rev1(s(%X), nil) -> s(%X) || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) || rev2(%X, nil) -> nil || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) || || The set Q consists of the following terms: || || rev(nil) || rev(cons(x0, x1)) || rev1(0, nil) || rev1(s(x0), nil) || rev1(x0, cons(x1, x2)) || rev2(x0, nil) || rev2(x0, cons(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (9) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REV1(%X, cons(%Y, %Z)) -> REV1(%Y, %Z) || || R is empty. || The set Q consists of the following terms: || || rev(nil) || rev(cons(x0, x1)) || rev1(0, nil) || rev1(s(x0), nil) || rev1(x0, cons(x1, x2)) || rev2(x0, nil) || rev2(x0, cons(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (10) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || rev(nil) || rev(cons(x0, x1)) || rev1(0, nil) || rev1(s(x0), nil) || rev1(x0, cons(x1, x2)) || rev2(x0, nil) || rev2(x0, cons(x1, x2)) || || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REV1(%X, cons(%Y, %Z)) -> REV1(%Y, %Z) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *REV1(%X, cons(%Y, %Z)) -> REV1(%Y, %Z) || The graph contains the following edges 2 > 1, 2 > 2 || || || ---------------------------------------- || || (13) || YES || || ---------------------------------------- || || (14) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REV(cons(%X, %Y)) -> REV2(%X, %Y) || REV2(%X, cons(%Y, %Z)) -> REV(cons(%X, rev2(%Y, %Z))) || REV2(%X, cons(%Y, %Z)) -> REV2(%Y, %Z) || || The TRS R consists of the following rules: || || rev(nil) -> nil || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) || rev1(0, nil) -> 0 || rev1(s(%X), nil) -> s(%X) || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) || rev2(%X, nil) -> nil || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) || || The set Q consists of the following terms: || || rev(nil) || rev(cons(x0, x1)) || rev1(0, nil) || rev1(s(x0), nil) || rev1(x0, cons(x1, x2)) || rev2(x0, nil) || rev2(x0, cons(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (15) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (16) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REV(cons(%X, %Y)) -> REV2(%X, %Y) || REV2(%X, cons(%Y, %Z)) -> REV(cons(%X, rev2(%Y, %Z))) || REV2(%X, cons(%Y, %Z)) -> REV2(%Y, %Z) || || The TRS R consists of the following rules: || || rev2(%X, nil) -> nil || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) || rev1(0, nil) -> 0 || rev1(s(%X), nil) -> s(%X) || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) || || The set Q consists of the following terms: || || rev(nil) || rev(cons(x0, x1)) || rev1(0, nil) || rev1(s(x0), nil) || rev1(x0, cons(x1, x2)) || rev2(x0, nil) || rev2(x0, cons(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (17) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || REV(cons(%X, %Y)) -> REV2(%X, %Y) || REV2(%X, cons(%Y, %Z)) -> REV2(%Y, %Z) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(REV(x_1)) = 1 + x_1 || POL(REV2(x_1, x_2)) = 1 + x_2 || POL(cons(x_1, x_2)) = 1 + x_2 || POL(nil) = 0 || POL(rev(x_1)) = x_1 || POL(rev1(x_1, x_2)) = 0 || POL(rev2(x_1, x_2)) = x_2 || POL(s(x_1)) = 0 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || rev2(%X, nil) -> nil || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) || || || ---------------------------------------- || || (18) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REV2(%X, cons(%Y, %Z)) -> REV(cons(%X, rev2(%Y, %Z))) || || The TRS R consists of the following rules: || || rev2(%X, nil) -> nil || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) || rev1(0, nil) -> 0 || rev1(s(%X), nil) -> s(%X) || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) || || The set Q consists of the following terms: || || rev(nil) || rev(cons(x0, x1)) || rev1(0, nil) || rev1(s(x0), nil) || rev1(x0, cons(x1, x2)) || rev2(x0, nil) || rev2(x0, cons(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (19) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. || ---------------------------------------- || || (20) || TRUE || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) 2] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 3] filter#(F, cons(X, Y)) =#> F(X) 4] filter2#(true, F, X, Y) =#> filter#(F, Y) 5] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: rev(nil) => nil rev(cons(X, Y)) => cons(rev1(X, Y), rev2(X, Y)) rev1(0, nil) => 0 rev1(s(X), nil) => s(X) rev1(X, cons(Y, Z)) => rev1(Y, Z) rev2(X, nil) => nil rev2(X, cons(Y, Z)) => rev(cons(X, rev2(Y, Z))) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). The formative rules of (P_0, R_0) are R_1 ::= rev(cons(X, Y)) => cons(rev1(X, Y), rev2(X, Y)) rev2(X, cons(Y, Z)) => rev(cons(X, rev2(Y, Z))) map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_0, R_1, minimal, formative). Thus, the original system is terminating if (P_0, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) rev(cons(X, Y)) >= cons(rev1(X, Y), rev2(X, Y)) rev2(X, cons(Y, Z)) >= rev(cons(X, rev2(Y, Z))) map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.1 + y1 + 2y0 false = 3 filter = \G0y1.y1 + G0(y1) + y1G0(y1) filter2 = \y0G1y2y3.1 + y3 + 2y2 + G1(y3) + y3G1(y3) filter2# = \y0G1y2y3.2y3G1(y3) filter# = \G0y1.2y1G0(y1) map = \G0y1.2y1 + 2y1G0(y1) map# = \G0y1.3 + y1G0(y1) rev = \y0.y0 rev1 = \y0y1.0 rev2 = \y0y1.y1 + 2y0 true = 3 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 3 + F0(1 + x2 + 2x1) + 2x1F0(1 + x2 + 2x1) + x2F0(1 + x2 + 2x1) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 3 + F0(1 + x2 + 2x1) + 2x1F0(1 + x2 + 2x1) + x2F0(1 + x2 + 2x1) >= 3 + x2F0(x2) = [[map#(_F0, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 2x2F0(1 + x2 + 2x1) + 2F0(1 + x2 + 2x1) + 4x1F0(1 + x2 + 2x1) >= 2x2F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 2x2F0(1 + x2 + 2x1) + 2F0(1 + x2 + 2x1) + 4x1F0(1 + x2 + 2x1) >= F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = 2x2F0(x2) >= 2x2F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = 2x2F0(x2) >= 2x2F0(x2) = [[filter#(_F0, _x2)]] [[rev(cons(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[cons(rev1(_x0, _x1), rev2(_x0, _x1))]] [[rev2(_x0, cons(_x1, _x2))]] = 1 + x2 + 2x0 + 2x1 >= 1 + x2 + 2x0 + 2x1 = [[rev(cons(_x0, rev2(_x1, _x2)))]] [[map(_F0, cons(_x1, _x2))]] = 2 + 2x2 + 4x1 + 2x2F0(1 + x2 + 2x1) + 2F0(1 + x2 + 2x1) + 4x1F0(1 + x2 + 2x1) >= 1 + 2x2 + 2x2F0(x2) + 2max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, cons(_x1, _x2))]] = 1 + x2 + 2x1 + 2x1F0(1 + x2 + 2x1) + 2F0(1 + x2 + 2x1) + x2F0(1 + x2 + 2x1) >= 1 + x2 + 2x1 + F0(x2) + x2F0(x2) = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 1 + x2 + 2x1 + F0(x2) + x2F0(x2) >= 1 + x2 + 2x1 + F0(x2) + x2F0(x2) = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 1 + x2 + 2x1 + F0(x2) + x2F0(x2) >= x2 + F0(x2) + x2F0(x2) = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_1, minimal, formative) by (P_1, R_1, minimal, formative), where P_1 consists of: map#(F, cons(X, Y)) =#> map#(F, Y) filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) =#> F(X) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 3, 4 * 2 : 0, 1, 2, 3, 4 * 3 : 1, 2 * 4 : 1, 2 This graph has the following strongly connected components: P_2: map#(F, cons(X, Y)) =#> map#(F, Y) P_3: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) =#> F(X) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_1, R_1, m, f) by (P_2, R_1, m, f) and (P_3, R_1, m, f). Thus, the original system is terminating if each of (P_2, R_1, minimal, formative) and (P_3, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) rev(cons(X, Y)) >= cons(rev1(X, Y), rev2(X, Y)) rev2(X, cons(Y, Z)) >= rev(cons(X, rev2(Y, Z))) map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.1 + y0 + y1 false = 3 filter = \G0y1.2y1 filter2 = \y0G1y2y3.2 + 2y2 + 2y3 filter2# = \y0G1y2y3.1 + y3 + y3G1(y3) filter# = \G0y1.y1 + y1G0(y1) map = \G0y1.2y1 + y1G0(y1) rev = \y0.y0 rev1 = \y0y1.0 rev2 = \y0y1.y0 + y1 true = 3 Using this interpretation, the requirements translate to: [[filter#(_F0, cons(_x1, _x2))]] = 1 + x1 + x2 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) >= 1 + x2 + x2F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 1 + x1 + x2 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = 1 + x2 + x2F0(x2) > x2 + x2F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = 1 + x2 + x2F0(x2) > x2 + x2F0(x2) = [[filter#(_F0, _x2)]] [[rev(cons(_x0, _x1))]] = 1 + x0 + x1 >= 1 + x0 + x1 = [[cons(rev1(_x0, _x1), rev2(_x0, _x1))]] [[rev2(_x0, cons(_x1, _x2))]] = 1 + x0 + x1 + x2 >= 1 + x0 + x1 + x2 = [[rev(cons(_x0, rev2(_x1, _x2)))]] [[map(_F0, cons(_x1, _x2))]] = 2 + 2x1 + 2x2 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) >= 1 + 2x2 + x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, cons(_x1, _x2))]] = 2 + 2x1 + 2x2 >= 2 + 2x1 + 2x2 = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 2 + 2x1 + 2x2 >= 1 + x1 + 2x2 = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 2 + 2x1 + 2x2 >= 2x2 = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_3, R_1, minimal, formative) by (P_4, R_1, minimal, formative), where P_4 consists of: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) Thus, the original system is terminating if each of (P_2, R_1, minimal, formative) and (P_4, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_2, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_1, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_1, minimal, f) by ({}, R_1, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.