We consider the system Applicative_first_order_05__#3.48. Alphabet: 0 : [] --> b 1 : [] --> b c : [b] --> b cons : [c * d] --> d f : [b] --> a false : [] --> a filter : [c -> a * d] --> d filter2 : [a * c -> a * c * d] --> d g : [b * b] --> b if : [a * b * b] --> b map : [c -> c * d] --> d nil : [] --> d s : [b] --> b true : [] --> a Rules: f(0) => true f(1) => false f(s(x)) => f(x) if(true, s(x), s(y)) => s(x) if(false, s(x), s(y)) => s(y) g(x, c(y)) => c(g(x, y)) g(x, c(y)) => g(x, if(f(x), c(g(s(x), y)), c(y))) map(h, nil) => nil map(h, cons(x, y)) => cons(h x, map(h, y)) filter(h, nil) => nil filter(h, cons(x, y)) => filter2(h x, h, x, y) filter2(true, h, x, y) => cons(x, filter(h, y)) filter2(false, h, x, y) => filter(h, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: f(0) => true f(1) => false f(s(X)) => f(X) if(true, s(X), s(Y)) => s(X) if(false, s(X), s(Y)) => s(Y) g(X, c(Y)) => c(g(X, Y)) g(X, c(Y)) => g(X, if(f(X), c(g(s(X), Y)), c(Y))) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) DependencyPairsProof [EQUIVALENT] || (2) QDP || (3) DependencyGraphProof [EQUIVALENT] || (4) AND || (5) QDP || (6) UsableRulesProof [EQUIVALENT] || (7) QDP || (8) QDPSizeChangeProof [EQUIVALENT] || (9) YES || (10) QDP || (11) UsableRulesProof [EQUIVALENT] || (12) QDP || (13) QDPSizeChangeProof [EQUIVALENT] || (14) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || if(true, s(%X), s(%Y)) -> s(%X) || if(false, s(%X), s(%Y)) -> s(%Y) || g(%X, c(%Y)) -> c(g(%X, %Y)) || g(%X, c(%Y)) -> g(%X, if(f(%X), c(g(s(%X), %Y)), c(%Y))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (2) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X)) -> F(%X) || G(%X, c(%Y)) -> G(%X, %Y) || G(%X, c(%Y)) -> G(%X, if(f(%X), c(g(s(%X), %Y)), c(%Y))) || G(%X, c(%Y)) -> IF(f(%X), c(g(s(%X), %Y)), c(%Y)) || G(%X, c(%Y)) -> F(%X) || G(%X, c(%Y)) -> G(s(%X), %Y) || || The TRS R consists of the following rules: || || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || if(true, s(%X), s(%Y)) -> s(%X) || if(false, s(%X), s(%Y)) -> s(%Y) || g(%X, c(%Y)) -> c(g(%X, %Y)) || g(%X, c(%Y)) -> g(%X, if(f(%X), c(g(s(%X), %Y)), c(%Y))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (3) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes. || ---------------------------------------- || || (4) || Complex Obligation (AND) || || ---------------------------------------- || || (5) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X)) -> F(%X) || || The TRS R consists of the following rules: || || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || if(true, s(%X), s(%Y)) -> s(%X) || if(false, s(%X), s(%Y)) -> s(%Y) || g(%X, c(%Y)) -> c(g(%X, %Y)) || g(%X, c(%Y)) -> g(%X, if(f(%X), c(g(s(%X), %Y)), c(%Y))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (6) UsableRulesProof (EQUIVALENT) || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X)) -> F(%X) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *F(s(%X)) -> F(%X) || The graph contains the following edges 1 > 1 || || || ---------------------------------------- || || (9) || YES || || ---------------------------------------- || || (10) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || G(%X, c(%Y)) -> G(s(%X), %Y) || G(%X, c(%Y)) -> G(%X, %Y) || || The TRS R consists of the following rules: || || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || if(true, s(%X), s(%Y)) -> s(%X) || if(false, s(%X), s(%Y)) -> s(%Y) || g(%X, c(%Y)) -> c(g(%X, %Y)) || g(%X, c(%Y)) -> g(%X, if(f(%X), c(g(s(%X), %Y)), c(%Y))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (11) UsableRulesProof (EQUIVALENT) || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (12) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || G(%X, c(%Y)) -> G(s(%X), %Y) || G(%X, c(%Y)) -> G(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (13) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *G(%X, c(%Y)) -> G(s(%X), %Y) || The graph contains the following edges 2 > 2 || || || *G(%X, c(%Y)) -> G(%X, %Y) || The graph contains the following edges 1 >= 1, 2 > 2 || || || ---------------------------------------- || || (14) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) 2] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 3] filter#(F, cons(X, Y)) =#> F(X) 4] filter2#(true, F, X, Y) =#> filter#(F, Y) 5] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: f(0) => true f(1) => false f(s(X)) => f(X) if(true, s(X), s(Y)) => s(X) if(false, s(X), s(Y)) => s(Y) g(X, c(Y)) => c(g(X, Y)) g(X, c(Y)) => g(X, if(f(X), c(g(s(X), Y)), c(Y))) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). The formative rules of (P_0, R_0) are R_1 ::= f(0) => true f(1) => false f(s(X)) => f(X) if(true, s(X), s(Y)) => s(X) if(false, s(X), s(Y)) => s(Y) map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_0, R_1, minimal, formative). Thus, the original system is terminating if (P_0, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) f(0) >= true f(1) >= false f(s(X)) >= f(X) if(true, s(X), s(Y)) >= s(X) if(false, s(X), s(Y)) >= s(Y) map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 3 1 = 3 cons = \y0y1.1 + y0 + y1 f = \y0.3 false = 0 filter = \G0y1.y1 filter2 = \y0G1y2y3.1 + y2 + y3 filter2# = \y0G1y2y3.G1(y3) filter# = \G0y1.G0(y1) if = \y0y1y2.3 + y2 + 2y1 map = \G0y1.2y1 + G0(y1) + 2y1G0(y1) map# = \G0y1.3 + y1 + G0(y1) s = \y0.y0 true = 0 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 4 + x1 + x2 + F0(1 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 4 + x1 + x2 + F0(1 + x1 + x2) > 3 + x2 + F0(x2) = [[map#(_F0, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = F0(1 + x1 + x2) >= F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = F0(1 + x1 + x2) >= F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = F0(x2) >= F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = F0(x2) >= F0(x2) = [[filter#(_F0, _x2)]] [[f(0)]] = 3 >= 0 = [[true]] [[f(1)]] = 3 >= 0 = [[false]] [[f(s(_x0))]] = 3 >= 3 = [[f(_x0)]] [[if(true, s(_x0), s(_x1))]] = 3 + x1 + 2x0 >= x0 = [[s(_x0)]] [[if(false, s(_x0), s(_x1))]] = 3 + x1 + 2x0 >= x1 = [[s(_x1)]] [[map(_F0, cons(_x1, _x2))]] = 2 + 2x1 + 2x2 + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 3F0(1 + x1 + x2) >= 1 + 2x2 + F0(x2) + 2x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, cons(_x1, _x2))]] = 1 + x1 + x2 >= 1 + x1 + x2 = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 1 + x1 + x2 >= 1 + x1 + x2 = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 1 + x1 + x2 >= x2 = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_1, minimal, formative) by (P_1, R_1, minimal, formative), where P_1 consists of: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) =#> F(X) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) f(0) >= true f(1) >= false f(s(X)) >= f(X) if(true, s(X), s(Y)) >= s(X) if(false, s(X), s(Y)) >= s(Y) map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 3 1 = 3 cons = \y0y1.2 + y0 + y1 f = \y0.3 false = 0 filter = \G0y1.y1 + G0(y1) + y1G0(y1) filter2 = \y0G1y2y3.2 + y2 + y3 + 2G1(y3) + y3G1(y3) filter2# = \y0G1y2y3.2y3 + 2G1(y3) filter# = \G0y1.2y1 + 2G0(y1) if = \y0y1y2.3 map = \G0y1.y1 + y1G0(y1) s = \y0.0 true = 0 Using this interpretation, the requirements translate to: [[filter#(_F0, cons(_x1, _x2))]] = 4 + 2x1 + 2x2 + 2F0(2 + x1 + x2) > 2x2 + 2F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 4 + 2x1 + 2x2 + 2F0(2 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = 2x2 + 2F0(x2) >= 2x2 + 2F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = 2x2 + 2F0(x2) >= 2x2 + 2F0(x2) = [[filter#(_F0, _x2)]] [[f(0)]] = 3 >= 0 = [[true]] [[f(1)]] = 3 >= 0 = [[false]] [[f(s(_x0))]] = 3 >= 3 = [[f(_x0)]] [[if(true, s(_x0), s(_x1))]] = 3 >= 0 = [[s(_x0)]] [[if(false, s(_x0), s(_x1))]] = 3 >= 0 = [[s(_x1)]] [[map(_F0, cons(_x1, _x2))]] = 2 + x1 + x2 + 2F0(2 + x1 + x2) + x1F0(2 + x1 + x2) + x2F0(2 + x1 + x2) >= 2 + x2 + x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, cons(_x1, _x2))]] = 2 + x1 + x2 + 3F0(2 + x1 + x2) + x1F0(2 + x1 + x2) + x2F0(2 + x1 + x2) >= 2 + x1 + x2 + 2F0(x2) + x2F0(x2) = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 2 + x1 + x2 + 2F0(x2) + x2F0(x2) >= 2 + x1 + x2 + F0(x2) + x2F0(x2) = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 2 + x1 + x2 + 2F0(x2) + x2F0(x2) >= x2 + F0(x2) + x2F0(x2) = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_1, minimal, formative) by (P_2, R_1, minimal, formative), where P_2 consists of: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_2, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.