We consider the system Applicative_first_order_05__#3.55. Alphabet: 0 : [] --> b add : [b * c] --> c app : [c * c] --> c false : [] --> a filter : [b -> a * c] --> c filter2 : [a * b -> a * b * c] --> c high : [b * c] --> c if!fac6220high : [a * b * c] --> c if!fac6220low : [a * b * c] --> c le : [b * b] --> a low : [b * c] --> c map : [b -> b * c] --> c minus : [b * b] --> b nil : [] --> c quicksort : [c] --> c quot : [b * b] --> b s : [b] --> b true : [] --> a Rules: minus(x, 0) => x minus(s(x), s(y)) => minus(x, y) quot(0, s(x)) => 0 quot(s(x), s(y)) => s(quot(minus(x, y), s(y))) le(0, x) => true le(s(x), 0) => false le(s(x), s(y)) => le(x, y) app(nil, x) => x app(add(x, y), z) => add(x, app(y, z)) low(x, nil) => nil low(x, add(y, z)) => if!fac6220low(le(y, x), x, add(y, z)) if!fac6220low(true, x, add(y, z)) => add(y, low(x, z)) if!fac6220low(false, x, add(y, z)) => low(x, z) high(x, nil) => nil high(x, add(y, z)) => if!fac6220high(le(y, x), x, add(y, z)) if!fac6220high(true, x, add(y, z)) => high(x, z) if!fac6220high(false, x, add(y, z)) => add(y, high(x, z)) quicksort(nil) => nil quicksort(add(x, y)) => app(quicksort(low(x, y)), add(x, quicksort(high(x, y)))) map(f, nil) => nil map(f, add(x, y)) => add(f x, map(f, y)) filter(f, nil) => nil filter(f, add(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => add(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) app(nil, X) => X app(add(X, Y), Z) => add(X, app(Y, Z)) low(X, nil) => nil low(X, add(Y, Z)) => if!fac6220low(le(Y, X), X, add(Y, Z)) if!fac6220low(true, X, add(Y, Z)) => add(Y, low(X, Z)) if!fac6220low(false, X, add(Y, Z)) => low(X, Z) high(X, nil) => nil high(X, add(Y, Z)) => if!fac6220high(le(Y, X), X, add(Y, Z)) if!fac6220high(true, X, add(Y, Z)) => high(X, Z) if!fac6220high(false, X, add(Y, Z)) => add(Y, high(X, Z)) quicksort(nil) => nil quicksort(add(X, Y)) => app(quicksort(low(X, Y)), add(X, quicksort(high(X, Y)))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) AND || (7) QDP || (8) UsableRulesProof [EQUIVALENT] || (9) QDP || (10) QReductionProof [EQUIVALENT] || (11) QDP || (12) QDPSizeChangeProof [EQUIVALENT] || (13) YES || (14) QDP || (15) UsableRulesProof [EQUIVALENT] || (16) QDP || (17) QReductionProof [EQUIVALENT] || (18) QDP || (19) QDPSizeChangeProof [EQUIVALENT] || (20) YES || (21) QDP || (22) UsableRulesProof [EQUIVALENT] || (23) QDP || (24) QReductionProof [EQUIVALENT] || (25) QDP || (26) QDPSizeChangeProof [EQUIVALENT] || (27) YES || (28) QDP || (29) UsableRulesProof [EQUIVALENT] || (30) QDP || (31) QReductionProof [EQUIVALENT] || (32) QDP || (33) QDPSizeChangeProof [EQUIVALENT] || (34) YES || (35) QDP || (36) UsableRulesProof [EQUIVALENT] || (37) QDP || (38) QReductionProof [EQUIVALENT] || (39) QDP || (40) QDPOrderProof [EQUIVALENT] || (41) QDP || (42) PisEmptyProof [EQUIVALENT] || (43) YES || (44) QDP || (45) UsableRulesProof [EQUIVALENT] || (46) QDP || (47) QReductionProof [EQUIVALENT] || (48) QDP || (49) QDPSizeChangeProof [EQUIVALENT] || (50) YES || (51) QDP || (52) UsableRulesProof [EQUIVALENT] || (53) QDP || (54) QReductionProof [EQUIVALENT] || (55) QDP || (56) QDPOrderProof [EQUIVALENT] || (57) QDP || (58) PisEmptyProof [EQUIVALENT] || (59) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || QUOT(s(%X), s(%Y)) -> MINUS(%X, %Y) || LE(s(%X), s(%Y)) -> LE(%X, %Y) || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || LOW(%X, add(%Y, %Z)) -> IF!FAC6220LOW(le(%Y, %X), %X, add(%Y, %Z)) || LOW(%X, add(%Y, %Z)) -> LE(%Y, %X) || IF!FAC6220LOW(true, %X, add(%Y, %Z)) -> LOW(%X, %Z) || IF!FAC6220LOW(false, %X, add(%Y, %Z)) -> LOW(%X, %Z) || HIGH(%X, add(%Y, %Z)) -> IF!FAC6220HIGH(le(%Y, %X), %X, add(%Y, %Z)) || HIGH(%X, add(%Y, %Z)) -> LE(%Y, %X) || IF!FAC6220HIGH(true, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || IF!FAC6220HIGH(false, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || QUICKSORT(add(%X, %Y)) -> APP(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || QUICKSORT(add(%X, %Y)) -> LOW(%X, %Y) || QUICKSORT(add(%X, %Y)) -> QUICKSORT(high(%X, %Y)) || QUICKSORT(add(%X, %Y)) -> HIGH(%X, %Y) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 6 less nodes. || ---------------------------------------- || || (6) || Complex Obligation (AND) || || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (9) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || || R is empty. || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (10) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || The graph contains the following edges 1 > 1, 2 >= 2 || || || ---------------------------------------- || || (13) || YES || || ---------------------------------------- || || (14) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (15) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (16) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (17) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (18) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (19) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LE(s(%X), s(%Y)) -> LE(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (20) || YES || || ---------------------------------------- || || (21) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || HIGH(%X, add(%Y, %Z)) -> IF!FAC6220HIGH(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220HIGH(true, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || IF!FAC6220HIGH(false, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (22) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (23) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || HIGH(%X, add(%Y, %Z)) -> IF!FAC6220HIGH(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220HIGH(true, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || IF!FAC6220HIGH(false, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (24) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (25) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || HIGH(%X, add(%Y, %Z)) -> IF!FAC6220HIGH(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220HIGH(true, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || IF!FAC6220HIGH(false, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (26) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *HIGH(%X, add(%Y, %Z)) -> IF!FAC6220HIGH(le(%Y, %X), %X, add(%Y, %Z)) || The graph contains the following edges 1 >= 2, 2 >= 3 || || || *IF!FAC6220HIGH(true, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || The graph contains the following edges 2 >= 1, 3 > 2 || || || *IF!FAC6220HIGH(false, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || The graph contains the following edges 2 >= 1, 3 > 2 || || || ---------------------------------------- || || (27) || YES || || ---------------------------------------- || || (28) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LOW(%X, add(%Y, %Z)) -> IF!FAC6220LOW(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220LOW(true, %X, add(%Y, %Z)) -> LOW(%X, %Z) || IF!FAC6220LOW(false, %X, add(%Y, %Z)) -> LOW(%X, %Z) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (29) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (30) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LOW(%X, add(%Y, %Z)) -> IF!FAC6220LOW(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220LOW(true, %X, add(%Y, %Z)) -> LOW(%X, %Z) || IF!FAC6220LOW(false, %X, add(%Y, %Z)) -> LOW(%X, %Z) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (31) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (32) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LOW(%X, add(%Y, %Z)) -> IF!FAC6220LOW(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220LOW(true, %X, add(%Y, %Z)) -> LOW(%X, %Z) || IF!FAC6220LOW(false, %X, add(%Y, %Z)) -> LOW(%X, %Z) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (33) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LOW(%X, add(%Y, %Z)) -> IF!FAC6220LOW(le(%Y, %X), %X, add(%Y, %Z)) || The graph contains the following edges 1 >= 2, 2 >= 3 || || || *IF!FAC6220LOW(true, %X, add(%Y, %Z)) -> LOW(%X, %Z) || The graph contains the following edges 2 >= 1, 3 > 2 || || || *IF!FAC6220LOW(false, %X, add(%Y, %Z)) -> LOW(%X, %Z) || The graph contains the following edges 2 >= 1, 3 > 2 || || || ---------------------------------------- || || (34) || YES || || ---------------------------------------- || || (35) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(high(%X, %Y)) || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (36) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (37) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(high(%X, %Y)) || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || || The TRS R consists of the following rules: || || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (38) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (39) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(high(%X, %Y)) || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || || The TRS R consists of the following rules: || || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (40) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(high(%X, %Y)) || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: || || POL( QUICKSORT_1(x_1) ) = max{0, 2x_1 - 2} || POL( high_2(x_1, x_2) ) = 2x_2 || POL( nil ) = 0 || POL( add_2(x_1, x_2) ) = 2x_2 + 2 || POL( if!fac6220high_3(x_1, ..., x_3) ) = max{0, 2x_3 - 2} || POL( le_2(x_1, x_2) ) = 2x_2 || POL( true ) = 2 || POL( low_2(x_1, x_2) ) = 2x_2 || POL( if!fac6220low_3(x_1, ..., x_3) ) = max{0, 2x_3 - 2} || POL( false ) = 2 || POL( 0 ) = 0 || POL( s_1(x_1) ) = 1 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || || || ---------------------------------------- || || (41) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (42) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (43) || YES || || ---------------------------------------- || || (44) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (45) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (46) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (47) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (48) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (49) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (50) || YES || || ---------------------------------------- || || (51) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (52) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (53) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (54) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (55) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (56) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: || || POL( QUOT_2(x_1, x_2) ) = 2x_1 + x_2 || POL( minus_2(x_1, x_2) ) = x_1 + 1 || POL( 0 ) = 2 || POL( s_1(x_1) ) = 2x_1 + 2 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || || || ---------------------------------------- || || (57) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (58) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (59) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, add(X, Y)) =#> F(X) 1] map#(F, add(X, Y)) =#> map#(F, Y) 2] filter#(F, add(X, Y)) =#> filter2#(F X, F, X, Y) 3] filter#(F, add(X, Y)) =#> F(X) 4] filter2#(true, F, X, Y) =#> filter#(F, Y) 5] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) app(nil, X) => X app(add(X, Y), Z) => add(X, app(Y, Z)) low(X, nil) => nil low(X, add(Y, Z)) => if!fac6220low(le(Y, X), X, add(Y, Z)) if!fac6220low(true, X, add(Y, Z)) => add(Y, low(X, Z)) if!fac6220low(false, X, add(Y, Z)) => low(X, Z) high(X, nil) => nil high(X, add(Y, Z)) => if!fac6220high(le(Y, X), X, add(Y, Z)) if!fac6220high(true, X, add(Y, Z)) => high(X, Z) if!fac6220high(false, X, add(Y, Z)) => add(Y, high(X, Z)) quicksort(nil) => nil quicksort(add(X, Y)) => app(quicksort(low(X, Y)), add(X, quicksort(high(X, Y)))) map(F, nil) => nil map(F, add(X, Y)) => add(F X, map(F, Y)) filter(F, nil) => nil filter(F, add(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => add(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, add(X, Y)) >? F(X) map#(F, add(X, Y)) >? map#(F, Y) filter#(F, add(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, add(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) minus(X, 0) >= X minus(s(X), s(Y)) >= minus(X, Y) quot(0, s(X)) >= 0 quot(s(X), s(Y)) >= s(quot(minus(X, Y), s(Y))) le(0, X) >= true le(s(X), 0) >= false le(s(X), s(Y)) >= le(X, Y) app(nil, X) >= X app(add(X, Y), Z) >= add(X, app(Y, Z)) low(X, nil) >= nil low(X, add(Y, Z)) >= if!fac6220low(le(Y, X), X, add(Y, Z)) if!fac6220low(true, X, add(Y, Z)) >= add(Y, low(X, Z)) if!fac6220low(false, X, add(Y, Z)) >= low(X, Z) high(X, nil) >= nil high(X, add(Y, Z)) >= if!fac6220high(le(Y, X), X, add(Y, Z)) if!fac6220high(true, X, add(Y, Z)) >= high(X, Z) if!fac6220high(false, X, add(Y, Z)) >= add(Y, high(X, Z)) quicksort(nil) >= nil quicksort(add(X, Y)) >= app(quicksort(low(X, Y)), add(X, quicksort(high(X, Y)))) map(F, nil) >= nil map(F, add(X, Y)) >= add(F X, map(F, Y)) filter(F, nil) >= nil filter(F, add(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= add(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) Since this representation is not advantageous for the higher-order recursive path ordering, we present the strict requirements in their unextended form, which is not problematic since for any F, s and substituion gamma: (F s)gamma beta-reduces to F(s)gamma.) We use a recursive path ordering as defined in [Kop12, Chapter 5]. Argument functions: [[0]] = _|_ [[false]] = _|_ [[filter2(x_1, x_2, x_3, x_4)]] = filter2(x_2, x_4, x_3, x_1) [[filter2#(x_1, x_2, x_3, x_4)]] = filter2#(x_2, x_4) [[high(x_1, x_2)]] = high(x_2) [[if!fac6220high(x_1, x_2, x_3)]] = if!fac6220high(x_3) [[if!fac6220low(x_1, x_2, x_3)]] = if!fac6220low(x_3) [[low(x_1, x_2)]] = low(x_2) [[minus(x_1, x_2)]] = x_1 [[nil]] = _|_ [[s(x_1)]] = x_1 [[true]] = _|_ We choose Lex = {filter, filter2} and Mul = {@_{o -> o}, add, app, filter2#, filter#, high, if!fac6220high, if!fac6220low, le, low, map, map#, quicksort, quot}, and the following precedence: filter = filter2 > le > map > quicksort > app > quot > add = high = if!fac6220high = if!fac6220low = low > filter2# = filter# > map# > @_{o -> o} Taking the argument function into account, and fixing the greater / greater equal choices, the constraints can be denoted as follows: map#(F, add(X, Y)) >= @_{o -> o}(F, X) map#(F, add(X, Y)) >= map#(F, Y) filter#(F, add(X, Y)) >= filter2#(F, Y) filter#(F, add(X, Y)) > @_{o -> o}(F, X) filter2#(F, X) >= filter#(F, X) filter2#(F, X) >= filter#(F, X) X >= X X >= X quot(_|_, X) >= _|_ quot(X, Y) >= quot(X, Y) le(_|_, X) >= _|_ le(X, _|_) >= _|_ le(X, Y) >= le(X, Y) app(_|_, X) >= X app(add(X, Y), Z) >= add(X, app(Y, Z)) low(_|_) >= _|_ low(add(X, Y)) >= if!fac6220low(add(X, Y)) if!fac6220low(add(X, Y)) >= add(X, low(Y)) if!fac6220low(add(X, Y)) >= low(Y) high(_|_) >= _|_ high(add(X, Y)) >= if!fac6220high(add(X, Y)) if!fac6220high(add(X, Y)) >= high(Y) if!fac6220high(add(X, Y)) >= add(X, high(Y)) quicksort(_|_) >= _|_ quicksort(add(X, Y)) >= app(quicksort(low(Y)), add(X, quicksort(high(Y)))) map(F, _|_) >= _|_ map(F, add(X, Y)) >= add(@_{o -> o}(F, X), map(F, Y)) filter(F, _|_) >= _|_ filter(F, add(X, Y)) >= filter2(@_{o -> o}(F, X), F, X, Y) filter2(_|_, F, X, Y) >= add(X, filter(F, Y)) filter2(_|_, F, X, Y) >= filter(F, Y) With these choices, we have: 1] map#(F, add(X, Y)) >= @_{o -> o}(F, X) because [2], by (Star) 2] map#*(F, add(X, Y)) >= @_{o -> o}(F, X) because map# > @_{o -> o}, [3] and [5], by (Copy) 3] map#*(F, add(X, Y)) >= F because [4], by (Select) 4] F >= F by (Meta) 5] map#*(F, add(X, Y)) >= X because [6], by (Select) 6] add(X, Y) >= X because [7], by (Star) 7] add*(X, Y) >= X because [8], by (Select) 8] X >= X by (Meta) 9] map#(F, add(X, Y)) >= map#(F, Y) because map# in Mul, [10] and [11], by (Fun) 10] F >= F by (Meta) 11] add(X, Y) >= Y because [12], by (Star) 12] add*(X, Y) >= Y because [13], by (Select) 13] Y >= Y by (Meta) 14] filter#(F, add(X, Y)) >= filter2#(F, Y) because filter# = filter2#, filter# in Mul, [15] and [16], by (Fun) 15] F >= F by (Meta) 16] add(X, Y) >= Y because [17], by (Star) 17] add*(X, Y) >= Y because [18], by (Select) 18] Y >= Y by (Meta) 19] filter#(F, add(X, Y)) > @_{o -> o}(F, X) because [20], by definition 20] filter#*(F, add(X, Y)) >= @_{o -> o}(F, X) because filter# > @_{o -> o}, [21] and [22], by (Copy) 21] filter#*(F, add(X, Y)) >= F because [15], by (Select) 22] filter#*(F, add(X, Y)) >= X because [23], by (Select) 23] add(X, Y) >= X because [24], by (Star) 24] add*(X, Y) >= X because [25], by (Select) 25] X >= X by (Meta) 26] filter2#(F, X) >= filter#(F, X) because filter2# = filter#, filter2# in Mul, [27] and [28], by (Fun) 27] F >= F by (Meta) 28] X >= X by (Meta) 29] filter2#(F, X) >= filter#(F, X) because filter2# = filter#, filter2# in Mul, [30] and [31], by (Fun) 30] F >= F by (Meta) 31] X >= X by (Meta) 32] X >= X by (Meta) 33] X >= X by (Meta) 34] quot(_|_, X) >= _|_ by (Bot) 35] quot(X, Y) >= quot(X, Y) because quot in Mul, [36] and [37], by (Fun) 36] X >= X by (Meta) 37] Y >= Y by (Meta) 38] le(_|_, X) >= _|_ by (Bot) 39] le(X, _|_) >= _|_ by (Bot) 40] le(X, Y) >= le(X, Y) because le in Mul, [41] and [42], by (Fun) 41] X >= X by (Meta) 42] Y >= Y by (Meta) 43] app(_|_, X) >= X because [44], by (Star) 44] app*(_|_, X) >= X because [45], by (Select) 45] X >= X by (Meta) 46] app(add(X, Y), Z) >= add(X, app(Y, Z)) because [47], by (Star) 47] app*(add(X, Y), Z) >= add(X, app(Y, Z)) because app > add, [48] and [52], by (Copy) 48] app*(add(X, Y), Z) >= X because [49], by (Select) 49] add(X, Y) >= X because [50], by (Star) 50] add*(X, Y) >= X because [51], by (Select) 51] X >= X by (Meta) 52] app*(add(X, Y), Z) >= app(Y, Z) because app in Mul, [53] and [56], by (Stat) 53] add(X, Y) > Y because [54], by definition 54] add*(X, Y) >= Y because [55], by (Select) 55] Y >= Y by (Meta) 56] Z >= Z by (Meta) 57] low(_|_) >= _|_ by (Bot) 58] low(add(X, Y)) >= if!fac6220low(add(X, Y)) because low = if!fac6220low, low in Mul and [59], by (Fun) 59] add(X, Y) >= add(X, Y) because add in Mul, [60] and [61], by (Fun) 60] X >= X by (Meta) 61] Y >= Y by (Meta) 62] if!fac6220low(add(X, Y)) >= add(X, low(Y)) because [63], by (Star) 63] if!fac6220low*(add(X, Y)) >= add(X, low(Y)) because if!fac6220low = add, if!fac6220low in Mul, [64] and [67], by (Stat) 64] add(X, Y) > X because [65], by definition 65] add*(X, Y) >= X because [66], by (Select) 66] X >= X by (Meta) 67] add(X, Y) > low(Y) because [68], by definition 68] add*(X, Y) >= low(Y) because add = low, add in Mul and [69], by (Stat) 69] Y >= Y by (Meta) 70] if!fac6220low(add(X, Y)) >= low(Y) because if!fac6220low = low, if!fac6220low in Mul and [71], by (Fun) 71] add(X, Y) >= Y because [72], by (Star) 72] add*(X, Y) >= Y because [73], by (Select) 73] Y >= Y by (Meta) 74] high(_|_) >= _|_ by (Bot) 75] high(add(X, Y)) >= if!fac6220high(add(X, Y)) because high = if!fac6220high, high in Mul and [76], by (Fun) 76] add(X, Y) >= add(X, Y) because add in Mul, [77] and [78], by (Fun) 77] X >= X by (Meta) 78] Y >= Y by (Meta) 79] if!fac6220high(add(X, Y)) >= high(Y) because if!fac6220high = high, if!fac6220high in Mul and [80], by (Fun) 80] add(X, Y) >= Y because [81], by (Star) 81] add*(X, Y) >= Y because [82], by (Select) 82] Y >= Y by (Meta) 83] if!fac6220high(add(X, Y)) >= add(X, high(Y)) because [84], by (Star) 84] if!fac6220high*(add(X, Y)) >= add(X, high(Y)) because if!fac6220high = add, if!fac6220high in Mul, [85] and [88], by (Stat) 85] add(X, Y) > X because [86], by definition 86] add*(X, Y) >= X because [87], by (Select) 87] X >= X by (Meta) 88] add(X, Y) > high(Y) because [89], by definition 89] add*(X, Y) >= high(Y) because add = high, add in Mul and [90], by (Stat) 90] Y >= Y by (Meta) 91] quicksort(_|_) >= _|_ by (Bot) 92] quicksort(add(X, Y)) >= app(quicksort(low(Y)), add(X, quicksort(high(Y)))) because [93], by (Star) 93] quicksort*(add(X, Y)) >= app(quicksort(low(Y)), add(X, quicksort(high(Y)))) because quicksort > app, [94] and [98], by (Copy) 94] quicksort*(add(X, Y)) >= quicksort(low(Y)) because quicksort in Mul and [95], by (Stat) 95] add(X, Y) > low(Y) because [96], by definition 96] add*(X, Y) >= low(Y) because add = low, add in Mul and [97], by (Stat) 97] Y >= Y by (Meta) 98] quicksort*(add(X, Y)) >= add(X, quicksort(high(Y))) because quicksort > add, [99] and [103], by (Copy) 99] quicksort*(add(X, Y)) >= X because [100], by (Select) 100] add(X, Y) >= X because [101], by (Star) 101] add*(X, Y) >= X because [102], by (Select) 102] X >= X by (Meta) 103] quicksort*(add(X, Y)) >= quicksort(high(Y)) because quicksort in Mul and [104], by (Stat) 104] add(X, Y) > high(Y) because [105], by definition 105] add*(X, Y) >= high(Y) because add = high, add in Mul and [97], by (Stat) 106] map(F, _|_) >= _|_ by (Bot) 107] map(F, add(X, Y)) >= add(@_{o -> o}(F, X), map(F, Y)) because [108], by (Star) 108] map*(F, add(X, Y)) >= add(@_{o -> o}(F, X), map(F, Y)) because map > add, [109] and [112], by (Copy) 109] map*(F, add(X, Y)) >= @_{o -> o}(F, X) because map > @_{o -> o}, [110] and [111], by (Copy) 110] map*(F, add(X, Y)) >= F because [10], by (Select) 111] map*(F, add(X, Y)) >= X because [6], by (Select) 112] map*(F, add(X, Y)) >= map(F, Y) because map in Mul, [10] and [113], by (Stat) 113] add(X, Y) > Y because [114], by definition 114] add*(X, Y) >= Y because [13], by (Select) 115] filter(F, _|_) >= _|_ by (Bot) 116] filter(F, add(X, Y)) >= filter2(@_{o -> o}(F, X), F, X, Y) because [117], by (Star) 117] filter*(F, add(X, Y)) >= filter2(@_{o -> o}(F, X), F, X, Y) because filter = filter2, [15], [118], [120], [121], [122] and [123], by (Stat) 118] add(X, Y) > Y because [119], by definition 119] add*(X, Y) >= Y because [18], by (Select) 120] filter*(F, add(X, Y)) >= @_{o -> o}(F, X) because filter > @_{o -> o}, [121] and [122], by (Copy) 121] filter*(F, add(X, Y)) >= F because [15], by (Select) 122] filter*(F, add(X, Y)) >= X because [23], by (Select) 123] filter*(F, add(X, Y)) >= Y because [16], by (Select) 124] filter2(_|_, F, X, Y) >= add(X, filter(F, Y)) because [125], by (Star) 125] filter2*(_|_, F, X, Y) >= add(X, filter(F, Y)) because filter2 > add, [126] and [128], by (Copy) 126] filter2*(_|_, F, X, Y) >= X because [127], by (Select) 127] X >= X by (Meta) 128] filter2*(_|_, F, X, Y) >= filter(F, Y) because filter2 = filter, [27], [28], [129] and [130], by (Stat) 129] filter2*(_|_, F, X, Y) >= F because [27], by (Select) 130] filter2*(_|_, F, X, Y) >= Y because [28], by (Select) 131] filter2(_|_, F, X, Y) >= filter(F, Y) because [132], by (Star) 132] filter2*(_|_, F, X, Y) >= filter(F, Y) because filter2 = filter, [30], [31], [133] and [134], by (Stat) 133] filter2*(_|_, F, X, Y) >= F because [30], by (Select) 134] filter2*(_|_, F, X, Y) >= Y because [31], by (Select) By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_1, R_0, minimal, formative), where P_1 consists of: map#(F, add(X, Y)) =#> F(X) map#(F, add(X, Y)) =#> map#(F, Y) filter#(F, add(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 2, 3, 4 * 1 : 0, 1 * 2 : 3, 4 * 3 : 2 * 4 : 2 This graph has the following strongly connected components: P_2: map#(F, add(X, Y)) =#> F(X) map#(F, add(X, Y)) =#> map#(F, Y) P_3: filter#(F, add(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_1, R_0, m, f) by (P_2, R_0, m, f) and (P_3, R_0, m, f). Thus, the original system is terminating if each of (P_2, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, add(X, Y))) = add(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_3, R_0, minimal, f) by (P_4, R_0, minimal, f), where P_4 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_2, R_0, minimal, formative) and (P_4, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, add(X, Y)) >? F(X) map#(F, add(X, Y)) >? map#(F, Y) minus(X, 0) >= X minus(s(X), s(Y)) >= minus(X, Y) quot(0, s(X)) >= 0 quot(s(X), s(Y)) >= s(quot(minus(X, Y), s(Y))) le(0, X) >= true le(s(X), 0) >= false le(s(X), s(Y)) >= le(X, Y) app(nil, X) >= X app(add(X, Y), Z) >= add(X, app(Y, Z)) low(X, nil) >= nil low(X, add(Y, Z)) >= if!fac6220low(le(Y, X), X, add(Y, Z)) if!fac6220low(true, X, add(Y, Z)) >= add(Y, low(X, Z)) if!fac6220low(false, X, add(Y, Z)) >= low(X, Z) high(X, nil) >= nil high(X, add(Y, Z)) >= if!fac6220high(le(Y, X), X, add(Y, Z)) if!fac6220high(true, X, add(Y, Z)) >= high(X, Z) if!fac6220high(false, X, add(Y, Z)) >= add(Y, high(X, Z)) quicksort(nil) >= nil quicksort(add(X, Y)) >= app(quicksort(low(X, Y)), add(X, quicksort(high(X, Y)))) map(F, nil) >= nil map(F, add(X, Y)) >= add(F X, map(F, Y)) filter(F, nil) >= nil filter(F, add(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= add(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) Since this representation is not advantageous for the higher-order recursive path ordering, we present the strict requirements in their unextended form, which is not problematic since for any F, s and substituion gamma: (F s)gamma beta-reduces to F(s)gamma.) We use a recursive path ordering as defined in [Kop12, Chapter 5]. Argument functions: [[0]] = _|_ [[filter(x_1, x_2)]] = x_2 [[filter2(x_1, x_2, x_3, x_4)]] = filter2(x_3, x_4) [[high(x_1, x_2)]] = x_2 [[if!fac6220high(x_1, x_2, x_3)]] = x_3 [[if!fac6220low(x_1, x_2, x_3)]] = if!fac6220low(x_3) [[low(x_1, x_2)]] = low(x_2) [[minus(x_1, x_2)]] = x_1 [[nil]] = _|_ [[s(x_1)]] = x_1 We choose Lex = {} and Mul = {@_{o -> o}, add, app, false, filter2, if!fac6220low, le, low, map, map#, quicksort, quot, true}, and the following precedence: map > quicksort > le > app > add = filter2 = if!fac6220low = low > true > false > @_{o -> o} = map# > quot Taking the argument function into account, and fixing the greater / greater equal choices, the constraints can be denoted as follows: map#(F, add(X, Y)) > @_{o -> o}(F, X) map#(F, add(X, Y)) >= map#(F, Y) X >= X X >= X quot(_|_, X) >= _|_ quot(X, Y) >= quot(X, Y) le(_|_, X) >= true le(X, _|_) >= false le(X, Y) >= le(X, Y) app(_|_, X) >= X app(add(X, Y), Z) >= add(X, app(Y, Z)) low(_|_) >= _|_ low(add(X, Y)) >= if!fac6220low(add(X, Y)) if!fac6220low(add(X, Y)) >= add(X, low(Y)) if!fac6220low(add(X, Y)) >= low(Y) _|_ >= _|_ add(X, Y) >= add(X, Y) add(X, Y) >= Y add(X, Y) >= add(X, Y) quicksort(_|_) >= _|_ quicksort(add(X, Y)) >= app(quicksort(low(Y)), add(X, quicksort(Y))) map(F, _|_) >= _|_ map(F, add(X, Y)) >= add(@_{o -> o}(F, X), map(F, Y)) _|_ >= _|_ add(X, Y) >= filter2(X, Y) filter2(X, Y) >= add(X, Y) filter2(X, Y) >= Y With these choices, we have: 1] map#(F, add(X, Y)) > @_{o -> o}(F, X) because [2], by definition 2] map#*(F, add(X, Y)) >= @_{o -> o}(F, X) because map# = @_{o -> o}, map# in Mul, [3] and [4], by (Stat) 3] F >= F by (Meta) 4] add(X, Y) > X because [5], by definition 5] add*(X, Y) >= X because [6], by (Select) 6] X >= X by (Meta) 7] map#(F, add(X, Y)) >= map#(F, Y) because map# in Mul, [3] and [8], by (Fun) 8] add(X, Y) >= Y because [9], by (Star) 9] add*(X, Y) >= Y because [10], by (Select) 10] Y >= Y by (Meta) 11] X >= X by (Meta) 12] X >= X by (Meta) 13] quot(_|_, X) >= _|_ by (Bot) 14] quot(X, Y) >= quot(X, Y) because quot in Mul, [15] and [16], by (Fun) 15] X >= X by (Meta) 16] Y >= Y by (Meta) 17] le(_|_, X) >= true because [18], by (Star) 18] le*(_|_, X) >= true because le > true, by (Copy) 19] le(X, _|_) >= false because [20], by (Star) 20] le*(X, _|_) >= false because le > false, by (Copy) 21] le(X, Y) >= le(X, Y) because le in Mul, [22] and [23], by (Fun) 22] X >= X by (Meta) 23] Y >= Y by (Meta) 24] app(_|_, X) >= X because [25], by (Star) 25] app*(_|_, X) >= X because [26], by (Select) 26] X >= X by (Meta) 27] app(add(X, Y), Z) >= add(X, app(Y, Z)) because [28], by (Star) 28] app*(add(X, Y), Z) >= add(X, app(Y, Z)) because app > add, [29] and [33], by (Copy) 29] app*(add(X, Y), Z) >= X because [30], by (Select) 30] add(X, Y) >= X because [31], by (Star) 31] add*(X, Y) >= X because [32], by (Select) 32] X >= X by (Meta) 33] app*(add(X, Y), Z) >= app(Y, Z) because app in Mul, [34] and [37], by (Stat) 34] add(X, Y) > Y because [35], by definition 35] add*(X, Y) >= Y because [36], by (Select) 36] Y >= Y by (Meta) 37] Z >= Z by (Meta) 38] low(_|_) >= _|_ by (Bot) 39] low(add(X, Y)) >= if!fac6220low(add(X, Y)) because low = if!fac6220low, low in Mul and [40], by (Fun) 40] add(X, Y) >= add(X, Y) because add in Mul, [41] and [42], by (Fun) 41] X >= X by (Meta) 42] Y >= Y by (Meta) 43] if!fac6220low(add(X, Y)) >= add(X, low(Y)) because [44], by (Star) 44] if!fac6220low*(add(X, Y)) >= add(X, low(Y)) because if!fac6220low = add, if!fac6220low in Mul, [45] and [48], by (Stat) 45] add(X, Y) > X because [46], by definition 46] add*(X, Y) >= X because [47], by (Select) 47] X >= X by (Meta) 48] add(X, Y) > low(Y) because [49], by definition 49] add*(X, Y) >= low(Y) because add = low, add in Mul and [50], by (Stat) 50] Y >= Y by (Meta) 51] if!fac6220low(add(X, Y)) >= low(Y) because [52], by (Star) 52] if!fac6220low*(add(X, Y)) >= low(Y) because if!fac6220low = low, if!fac6220low in Mul and [53], by (Stat) 53] add(X, Y) > Y because [54], by definition 54] add*(X, Y) >= Y because [55], by (Select) 55] Y >= Y by (Meta) 56] _|_ >= _|_ by (Bot) 57] add(X, Y) >= add(X, Y) because add in Mul, [58] and [59], by (Fun) 58] X >= X by (Meta) 59] Y >= Y by (Meta) 60] add(X, Y) >= Y because [61], by (Star) 61] add*(X, Y) >= Y because [62], by (Select) 62] Y >= Y by (Meta) 63] add(X, Y) >= add(X, Y) because add in Mul, [64] and [65], by (Fun) 64] X >= X by (Meta) 65] Y >= Y by (Meta) 66] quicksort(_|_) >= _|_ by (Bot) 67] quicksort(add(X, Y)) >= app(quicksort(low(Y)), add(X, quicksort(Y))) because [68], by (Star) 68] quicksort*(add(X, Y)) >= app(quicksort(low(Y)), add(X, quicksort(Y))) because quicksort > app, [69] and [73], by (Copy) 69] quicksort*(add(X, Y)) >= quicksort(low(Y)) because quicksort in Mul and [70], by (Stat) 70] add(X, Y) > low(Y) because [71], by definition 71] add*(X, Y) >= low(Y) because add = low, add in Mul and [72], by (Stat) 72] Y >= Y by (Meta) 73] quicksort*(add(X, Y)) >= add(X, quicksort(Y)) because quicksort > add, [74] and [78], by (Copy) 74] quicksort*(add(X, Y)) >= X because [75], by (Select) 75] add(X, Y) >= X because [76], by (Star) 76] add*(X, Y) >= X because [77], by (Select) 77] X >= X by (Meta) 78] quicksort*(add(X, Y)) >= quicksort(Y) because quicksort in Mul and [79], by (Stat) 79] add(X, Y) > Y because [80], by definition 80] add*(X, Y) >= Y because [72], by (Select) 81] map(F, _|_) >= _|_ by (Bot) 82] map(F, add(X, Y)) >= add(@_{o -> o}(F, X), map(F, Y)) because [83], by (Star) 83] map*(F, add(X, Y)) >= add(@_{o -> o}(F, X), map(F, Y)) because map > add, [84] and [88], by (Copy) 84] map*(F, add(X, Y)) >= @_{o -> o}(F, X) because map > @_{o -> o}, [85] and [86], by (Copy) 85] map*(F, add(X, Y)) >= F because [3], by (Select) 86] map*(F, add(X, Y)) >= X because [87], by (Select) 87] add(X, Y) >= X because [5], by (Star) 88] map*(F, add(X, Y)) >= map(F, Y) because map in Mul, [3] and [89], by (Stat) 89] add(X, Y) > Y because [90], by definition 90] add*(X, Y) >= Y because [10], by (Select) 91] _|_ >= _|_ by (Bot) 92] add(X, Y) >= filter2(X, Y) because add = filter2, add in Mul, [93] and [94], by (Fun) 93] X >= X by (Meta) 94] Y >= Y by (Meta) 95] filter2(X, Y) >= add(X, Y) because filter2 = add, filter2 in Mul, [96] and [97], by (Fun) 96] X >= X by (Meta) 97] Y >= Y by (Meta) 98] filter2(X, Y) >= Y because [99], by (Star) 99] filter2*(X, Y) >= Y because [100], by (Select) 100] Y >= Y by (Meta) By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_2, R_0, minimal, formative) by (P_5, R_0, minimal, formative), where P_5 consists of: map#(F, add(X, Y)) =#> map#(F, Y) Thus, the original system is terminating if (P_5, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_5, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, add(X, Y))) = add(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_5, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.