We consider the system Applicative_first_order_05__#3.57. Alphabet: 0 : [] --> b app : [c * c] --> c cons : [b * c] --> c false : [] --> a filter : [b -> a * c] --> c filter2 : [a * b -> a * b * c] --> c map : [b -> b * c] --> c minus : [b * b] --> b nil : [] --> c plus : [b * b] --> b quot : [b * b] --> b s : [b] --> b sum : [c] --> c true : [] --> a Rules: minus(x, 0) => x minus(s(x), s(y)) => minus(x, y) minus(minus(x, y), z) => minus(x, plus(y, z)) quot(0, s(x)) => 0 quot(s(x), s(y)) => s(quot(minus(x, y), s(y))) plus(0, x) => x plus(s(x), y) => s(plus(x, y)) app(nil, x) => x app(x, nil) => x app(cons(x, y), z) => cons(x, app(y, z)) sum(cons(x, nil)) => cons(x, nil) sum(cons(x, cons(y, z))) => sum(cons(plus(x, y), z)) sum(app(x, cons(y, cons(z, u)))) => sum(app(x, sum(cons(y, cons(z, u))))) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) minus(minus(X, Y), Z) => minus(X, plus(Y, Z)) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) plus(0, X) => X plus(s(X), Y) => s(plus(X, Y)) app(nil, X) => X app(X, nil) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) sum(cons(X, nil)) => cons(X, nil) sum(cons(X, cons(Y, Z))) => sum(cons(plus(X, Y), Z)) sum(app(X, cons(Y, cons(Z, U)))) => sum(app(X, sum(cons(Y, cons(Z, U))))) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) DependencyPairsProof [EQUIVALENT] || (2) QDP || (3) DependencyGraphProof [EQUIVALENT] || (4) AND || (5) QDP || (6) UsableRulesProof [EQUIVALENT] || (7) QDP || (8) QDPSizeChangeProof [EQUIVALENT] || (9) YES || (10) QDP || (11) UsableRulesProof [EQUIVALENT] || (12) QDP || (13) QDPSizeChangeProof [EQUIVALENT] || (14) YES || (15) QDP || (16) UsableRulesProof [EQUIVALENT] || (17) QDP || (18) MNOCProof [EQUIVALENT] || (19) QDP || (20) UsableRulesReductionPairsProof [EQUIVALENT] || (21) QDP || (22) PisEmptyProof [EQUIVALENT] || (23) YES || (24) QDP || (25) UsableRulesProof [EQUIVALENT] || (26) QDP || (27) UsableRulesReductionPairsProof [EQUIVALENT] || (28) QDP || (29) MRRProof [EQUIVALENT] || (30) QDP || (31) DependencyGraphProof [EQUIVALENT] || (32) TRUE || (33) QDP || (34) UsableRulesProof [EQUIVALENT] || (35) QDP || (36) MNOCProof [EQUIVALENT] || (37) QDP || (38) QDPSizeChangeProof [EQUIVALENT] || (39) YES || (40) QDP || (41) QDPOrderProof [EQUIVALENT] || (42) QDP || (43) PisEmptyProof [EQUIVALENT] || (44) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || app(nil, %X) -> %X || app(%X, nil) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || sum(cons(%X, nil)) -> cons(%X, nil) || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (2) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || MINUS(minus(%X, %Y), %Z) -> MINUS(%X, plus(%Y, %Z)) || MINUS(minus(%X, %Y), %Z) -> PLUS(%Y, %Z) || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || QUOT(s(%X), s(%Y)) -> MINUS(%X, %Y) || PLUS(s(%X), %Y) -> PLUS(%X, %Y) || APP(cons(%X, %Y), %Z) -> APP(%Y, %Z) || SUM(cons(%X, cons(%Y, %Z))) -> SUM(cons(plus(%X, %Y), %Z)) || SUM(cons(%X, cons(%Y, %Z))) -> PLUS(%X, %Y) || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(app(%X, sum(cons(%Y, cons(%Z, %U))))) || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> APP(%X, sum(cons(%Y, cons(%Z, %U)))) || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(cons(%Y, cons(%Z, %U))) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || app(nil, %X) -> %X || app(%X, nil) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || sum(cons(%X, nil)) -> cons(%X, nil) || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (3) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 5 less nodes. || ---------------------------------------- || || (4) || Complex Obligation (AND) || || ---------------------------------------- || || (5) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || APP(cons(%X, %Y), %Z) -> APP(%Y, %Z) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || app(nil, %X) -> %X || app(%X, nil) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || sum(cons(%X, nil)) -> cons(%X, nil) || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (6) UsableRulesProof (EQUIVALENT) || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || APP(cons(%X, %Y), %Z) -> APP(%Y, %Z) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *APP(cons(%X, %Y), %Z) -> APP(%Y, %Z) || The graph contains the following edges 1 > 1, 2 >= 2 || || || ---------------------------------------- || || (9) || YES || || ---------------------------------------- || || (10) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || PLUS(s(%X), %Y) -> PLUS(%X, %Y) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || app(nil, %X) -> %X || app(%X, nil) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || sum(cons(%X, nil)) -> cons(%X, nil) || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (11) UsableRulesProof (EQUIVALENT) || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (12) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || PLUS(s(%X), %Y) -> PLUS(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (13) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *PLUS(s(%X), %Y) -> PLUS(%X, %Y) || The graph contains the following edges 1 > 1, 2 >= 2 || || || ---------------------------------------- || || (14) || YES || || ---------------------------------------- || || (15) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SUM(cons(%X, cons(%Y, %Z))) -> SUM(cons(plus(%X, %Y), %Z)) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || app(nil, %X) -> %X || app(%X, nil) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || sum(cons(%X, nil)) -> cons(%X, nil) || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (16) UsableRulesProof (EQUIVALENT) || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (17) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SUM(cons(%X, cons(%Y, %Z))) -> SUM(cons(plus(%X, %Y), %Z)) || || The TRS R consists of the following rules: || || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (18) MNOCProof (EQUIVALENT) || We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. || ---------------------------------------- || || (19) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SUM(cons(%X, cons(%Y, %Z))) -> SUM(cons(plus(%X, %Y), %Z)) || || The TRS R consists of the following rules: || || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || || The set Q consists of the following terms: || || plus(0, x0) || plus(s(x0), x1) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (20) UsableRulesReductionPairsProof (EQUIVALENT) || By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. || || The following dependency pairs can be deleted: || || SUM(cons(%X, cons(%Y, %Z))) -> SUM(cons(plus(%X, %Y), %Z)) || The following rules are removed from R: || || plus(0, %X) -> %X || Used ordering: POLO with Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(SUM(x_1)) = 2*x_1 || POL(cons(x_1, x_2)) = 2 + 2*x_1 + 2*x_2 || POL(plus(x_1, x_2)) = x_1 + x_2 || POL(s(x_1)) = x_1 || || || ---------------------------------------- || || (21) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || plus(s(%X), %Y) -> s(plus(%X, %Y)) || || The set Q consists of the following terms: || || plus(0, x0) || plus(s(x0), x1) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (22) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (23) || YES || || ---------------------------------------- || || (24) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(app(%X, sum(cons(%Y, cons(%Z, %U))))) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || app(nil, %X) -> %X || app(%X, nil) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || sum(cons(%X, nil)) -> cons(%X, nil) || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (25) UsableRulesProof (EQUIVALENT) || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (26) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(app(%X, sum(cons(%Y, cons(%Z, %U))))) || || The TRS R consists of the following rules: || || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || app(nil, %X) -> %X || app(%X, nil) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || sum(cons(%X, nil)) -> cons(%X, nil) || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (27) UsableRulesReductionPairsProof (EQUIVALENT) || By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. || || No dependency pairs are removed. || || The following rules are removed from R: || || app(nil, %X) -> %X || app(%X, nil) -> %X || plus(0, %X) -> %X || Used ordering: POLO with Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(SUM(x_1)) = x_1 || POL(app(x_1, x_2)) = 2 + 2*x_1 + x_2 || POL(cons(x_1, x_2)) = 2*x_1 + x_2 || POL(nil) = 0 || POL(plus(x_1, x_2)) = x_1 + x_2 || POL(s(x_1)) = x_1 || POL(sum(x_1)) = x_1 || || || ---------------------------------------- || || (28) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(app(%X, sum(cons(%Y, cons(%Z, %U))))) || || The TRS R consists of the following rules: || || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || plus(s(%X), %Y) -> s(plus(%X, %Y)) || sum(cons(%X, nil)) -> cons(%X, nil) || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (29) MRRProof (EQUIVALENT) || By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. || || || Strictly oriented rules of the TRS R: || || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || || Used ordering: Polynomial interpretation [POLO]: || || POL(SUM(x_1)) = x_1 || POL(app(x_1, x_2)) = 1 + 2*x_1 + 2*x_2 || POL(cons(x_1, x_2)) = 1 + x_1 + x_2 || POL(nil) = 0 || POL(plus(x_1, x_2)) = x_1 + x_2 || POL(s(x_1)) = x_1 || POL(sum(x_1)) = x_1 || || || ---------------------------------------- || || (30) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(app(%X, sum(cons(%Y, cons(%Z, %U))))) || || The TRS R consists of the following rules: || || plus(s(%X), %Y) -> s(plus(%X, %Y)) || sum(cons(%X, nil)) -> cons(%X, nil) || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (31) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. || ---------------------------------------- || || (32) || TRUE || || ---------------------------------------- || || (33) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(minus(%X, %Y), %Z) -> MINUS(%X, plus(%Y, %Z)) || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || app(nil, %X) -> %X || app(%X, nil) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || sum(cons(%X, nil)) -> cons(%X, nil) || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (34) UsableRulesProof (EQUIVALENT) || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (35) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(minus(%X, %Y), %Z) -> MINUS(%X, plus(%Y, %Z)) || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || The TRS R consists of the following rules: || || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (36) MNOCProof (EQUIVALENT) || We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. || ---------------------------------------- || || (37) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(minus(%X, %Y), %Z) -> MINUS(%X, plus(%Y, %Z)) || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || The TRS R consists of the following rules: || || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || || The set Q consists of the following terms: || || plus(0, x0) || plus(s(x0), x1) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (38) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *MINUS(minus(%X, %Y), %Z) -> MINUS(%X, plus(%Y, %Z)) || The graph contains the following edges 1 > 1 || || || *MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (39) || YES || || ---------------------------------------- || || (40) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || app(nil, %X) -> %X || app(%X, nil) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || sum(cons(%X, nil)) -> cons(%X, nil) || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (41) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || The remaining pairs can at least be oriented weakly. || Used ordering: Combined order from the following AFS and order. || QUOT(x1, x2) = QUOT(x1) || || s(x1) = s(x1) || || minus(x1, x2) = x1 || || 0 = 0 || || plus(x1, x2) = x2 || || || Recursive path order with status [RPO]. || Quasi-Precedence: QUOT_1 > s_1 || 0 > s_1 || || Status: QUOT_1: [1] || s_1: multiset status || 0: multiset status || || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || minus(%X, 0) -> %X || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) || minus(s(%X), s(%Y)) -> minus(%X, %Y) || || || ---------------------------------------- || || (42) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || app(nil, %X) -> %X || app(%X, nil) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || sum(cons(%X, nil)) -> cons(%X, nil) || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (43) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (44) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) 2] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 3] filter#(F, cons(X, Y)) =#> F(X) 4] filter2#(true, F, X, Y) =#> filter#(F, Y) 5] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) minus(minus(X, Y), Z) => minus(X, plus(Y, Z)) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) plus(0, X) => X plus(s(X), Y) => s(plus(X, Y)) app(nil, X) => X app(X, nil) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) sum(cons(X, nil)) => cons(X, nil) sum(cons(X, cons(Y, Z))) => sum(cons(plus(X, Y), Z)) sum(app(X, cons(Y, cons(Z, U)))) => sum(app(X, sum(cons(Y, cons(Z, U))))) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). The formative rules of (P_0, R_0) are R_1 ::= app(nil, X) => X app(X, nil) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) sum(cons(X, nil)) => cons(X, nil) sum(cons(X, cons(Y, Z))) => sum(cons(plus(X, Y), Z)) sum(app(X, cons(Y, cons(Z, U)))) => sum(app(X, sum(cons(Y, cons(Z, U))))) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_0, R_1, minimal, formative). Thus, the original system is terminating if (P_0, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) app(nil, X) >= X app(X, nil) >= X app(cons(X, Y), Z) >= cons(X, app(Y, Z)) sum(cons(X, nil)) >= cons(X, nil) sum(cons(X, cons(Y, Z))) >= sum(cons(plus(X, Y), Z)) sum(app(X, cons(Y, cons(Z, U)))) >= sum(app(X, sum(cons(Y, cons(Z, U))))) map(F, nil) >= nil map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, nil) >= nil filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: app = \y0y1.y1 + 3y0 cons = \y0y1.2 + y0 + y1 false = 3 filter = \G0y1.y1 filter2 = \y0G1y2y3.2 + y2 + y3 filter2# = \y0G1y2y3.2y3 + G1(y3) filter# = \G0y1.2y1 + G0(y1) map = \G0y1.y1 + y1G0(y1) map# = \G0y1.3 + y1 + G0(y1) nil = 0 plus = \y0y1.0 sum = \y0.y0 true = 3 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 5 + x1 + x2 + F0(2 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 5 + x1 + x2 + F0(2 + x1 + x2) > 3 + x2 + F0(x2) = [[map#(_F0, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 4 + 2x1 + 2x2 + F0(2 + x1 + x2) > 2x2 + F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 4 + 2x1 + 2x2 + F0(2 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = 2x2 + F0(x2) >= 2x2 + F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = 2x2 + F0(x2) >= 2x2 + F0(x2) = [[filter#(_F0, _x2)]] [[app(nil, _x0)]] = x0 >= x0 = [[_x0]] [[app(_x0, nil)]] = 3x0 >= x0 = [[_x0]] [[app(cons(_x0, _x1), _x2)]] = 6 + x2 + 3x0 + 3x1 >= 2 + x0 + x2 + 3x1 = [[cons(_x0, app(_x1, _x2))]] [[sum(cons(_x0, nil))]] = 2 + x0 >= 2 + x0 = [[cons(_x0, nil)]] [[sum(cons(_x0, cons(_x1, _x2)))]] = 4 + x0 + x1 + x2 >= 2 + x2 = [[sum(cons(plus(_x0, _x1), _x2))]] [[sum(app(_x0, cons(_x1, cons(_x2, _x3))))]] = 4 + x1 + x2 + x3 + 3x0 >= 4 + x1 + x2 + x3 + 3x0 = [[sum(app(_x0, sum(cons(_x1, cons(_x2, _x3)))))]] [[map(_F0, nil)]] = 0 >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 2 + x1 + x2 + 2F0(2 + x1 + x2) + x1F0(2 + x1 + x2) + x2F0(2 + x1 + x2) >= 2 + x2 + x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, nil)]] = 0 >= 0 = [[nil]] [[filter(_F0, cons(_x1, _x2))]] = 2 + x1 + x2 >= 2 + x1 + x2 = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 2 + x1 + x2 >= 2 + x1 + x2 = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 2 + x1 + x2 >= x2 = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_1, minimal, formative) by (P_1, R_1, minimal, formative), where P_1 consists of: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.