We consider the system Applicative_first_order_05__perfect2. Alphabet: 0 : [] --> a cons : [c * d] --> d f : [a * a * a * a] --> b false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d if : [b * b * b] --> b le : [a * a] --> b map : [c -> c * d] --> d minus : [a * a] --> a nil : [] --> d perfectp : [a] --> b s : [a] --> a true : [] --> b Rules: minus(0, x) => 0 minus(s(x), 0) => s(x) minus(s(x), s(y)) => minus(x, y) le(0, x) => true le(s(x), 0) => false le(s(x), s(y)) => le(x, y) if(true, x, y) => x if(false, x, y) => y perfectp(0) => false perfectp(s(x)) => f(x, s(0), s(x), s(x)) f(0, x, 0, y) => true f(0, x, s(y), z) => false f(s(x), 0, y, z) => f(x, z, minus(y, s(x)), z) f(s(x), s(y), z, u) => if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) map(g, nil) => nil map(g, cons(x, y)) => cons(g x, map(g, y)) filter(g, nil) => nil filter(g, cons(x, y)) => filter2(g x, g, x, y) filter2(true, g, x, y) => cons(x, filter(g, y)) filter2(false, g, x, y) => filter(g, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: minus(0, X) => 0 minus(s(X), 0) => s(X) minus(s(X), s(Y)) => minus(X, Y) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) if(true, X, Y) => X if(false, X, Y) => Y perfectp(0) => false perfectp(s(X)) => f(X, s(0), s(X), s(X)) f(0, X, 0, Y) => true f(0, X, s(Y), Z) => false f(s(X), 0, Y, Z) => f(X, Z, minus(Y, s(X)), Z) f(s(X), s(Y), Z, U) => if(le(X, Y), f(s(X), minus(Y, X), Z, U), f(X, U, Z, U)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) AND || (7) QDP || (8) UsableRulesProof [EQUIVALENT] || (9) QDP || (10) QReductionProof [EQUIVALENT] || (11) QDP || (12) QDPSizeChangeProof [EQUIVALENT] || (13) YES || (14) QDP || (15) UsableRulesProof [EQUIVALENT] || (16) QDP || (17) QReductionProof [EQUIVALENT] || (18) QDP || (19) QDPSizeChangeProof [EQUIVALENT] || (20) YES || (21) QDP || (22) UsableRulesProof [EQUIVALENT] || (23) QDP || (24) QReductionProof [EQUIVALENT] || (25) QDP || (26) QDPOrderProof [EQUIVALENT] || (27) QDP || (28) QDPOrderProof [EQUIVALENT] || (29) QDP || (30) PisEmptyProof [EQUIVALENT] || (31) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || minus(0, %X) -> 0 || minus(s(%X), 0) -> s(%X) || minus(s(%X), s(%Y)) -> minus(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || perfectp(0) -> false || perfectp(s(%X)) -> f(%X, s(0), s(%X), s(%X)) || f(0, %X, 0, %Y) -> true || f(0, %X, s(%Y), %Z) -> false || f(s(%X), 0, %Y, %Z) -> f(%X, %Z, minus(%Y, s(%X)), %Z) || f(s(%X), s(%Y), %Z, %U) -> if(le(%X, %Y), f(s(%X), minus(%Y, %X), %Z, %U), f(%X, %U, %Z, %U)) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || minus(0, %X) -> 0 || minus(s(%X), 0) -> s(%X) || minus(s(%X), s(%Y)) -> minus(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || perfectp(0) -> false || perfectp(s(%X)) -> f(%X, s(0), s(%X), s(%X)) || f(0, %X, 0, %Y) -> true || f(0, %X, s(%Y), %Z) -> false || f(s(%X), 0, %Y, %Z) -> f(%X, %Z, minus(%Y, s(%X)), %Z) || f(s(%X), s(%Y), %Z, %U) -> if(le(%X, %Y), f(s(%X), minus(%Y, %X), %Z, %U), f(%X, %U, %Z, %U)) || || The set Q consists of the following terms: || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || if(true, x0, x1) || if(false, x0, x1) || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || LE(s(%X), s(%Y)) -> LE(%X, %Y) || PERFECTP(s(%X)) -> F(%X, s(0), s(%X), s(%X)) || F(s(%X), 0, %Y, %Z) -> F(%X, %Z, minus(%Y, s(%X)), %Z) || F(s(%X), 0, %Y, %Z) -> MINUS(%Y, s(%X)) || F(s(%X), s(%Y), %Z, %U) -> IF(le(%X, %Y), f(s(%X), minus(%Y, %X), %Z, %U), f(%X, %U, %Z, %U)) || F(s(%X), s(%Y), %Z, %U) -> LE(%X, %Y) || F(s(%X), s(%Y), %Z, %U) -> F(s(%X), minus(%Y, %X), %Z, %U) || F(s(%X), s(%Y), %Z, %U) -> MINUS(%Y, %X) || F(s(%X), s(%Y), %Z, %U) -> F(%X, %U, %Z, %U) || || The TRS R consists of the following rules: || || minus(0, %X) -> 0 || minus(s(%X), 0) -> s(%X) || minus(s(%X), s(%Y)) -> minus(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || perfectp(0) -> false || perfectp(s(%X)) -> f(%X, s(0), s(%X), s(%X)) || f(0, %X, 0, %Y) -> true || f(0, %X, s(%Y), %Z) -> false || f(s(%X), 0, %Y, %Z) -> f(%X, %Z, minus(%Y, s(%X)), %Z) || f(s(%X), s(%Y), %Z, %U) -> if(le(%X, %Y), f(s(%X), minus(%Y, %X), %Z, %U), f(%X, %U, %Z, %U)) || || The set Q consists of the following terms: || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || if(true, x0, x1) || if(false, x0, x1) || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 5 less nodes. || ---------------------------------------- || || (6) || Complex Obligation (AND) || || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || The TRS R consists of the following rules: || || minus(0, %X) -> 0 || minus(s(%X), 0) -> s(%X) || minus(s(%X), s(%Y)) -> minus(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || perfectp(0) -> false || perfectp(s(%X)) -> f(%X, s(0), s(%X), s(%X)) || f(0, %X, 0, %Y) -> true || f(0, %X, s(%Y), %Z) -> false || f(s(%X), 0, %Y, %Z) -> f(%X, %Z, minus(%Y, s(%X)), %Z) || f(s(%X), s(%Y), %Z, %U) -> if(le(%X, %Y), f(s(%X), minus(%Y, %X), %Z, %U), f(%X, %U, %Z, %U)) || || The set Q consists of the following terms: || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || if(true, x0, x1) || if(false, x0, x1) || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (9) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || if(true, x0, x1) || if(false, x0, x1) || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (10) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || if(true, x0, x1) || if(false, x0, x1) || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LE(s(%X), s(%Y)) -> LE(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (13) || YES || || ---------------------------------------- || || (14) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || The TRS R consists of the following rules: || || minus(0, %X) -> 0 || minus(s(%X), 0) -> s(%X) || minus(s(%X), s(%Y)) -> minus(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || perfectp(0) -> false || perfectp(s(%X)) -> f(%X, s(0), s(%X), s(%X)) || f(0, %X, 0, %Y) -> true || f(0, %X, s(%Y), %Z) -> false || f(s(%X), 0, %Y, %Z) -> f(%X, %Z, minus(%Y, s(%X)), %Z) || f(s(%X), s(%Y), %Z, %U) -> if(le(%X, %Y), f(s(%X), minus(%Y, %X), %Z, %U), f(%X, %U, %Z, %U)) || || The set Q consists of the following terms: || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || if(true, x0, x1) || if(false, x0, x1) || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (15) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (16) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || if(true, x0, x1) || if(false, x0, x1) || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (17) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || if(true, x0, x1) || if(false, x0, x1) || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || || ---------------------------------------- || || (18) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (19) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (20) || YES || || ---------------------------------------- || || (21) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X), s(%Y), %Z, %U) -> F(s(%X), minus(%Y, %X), %Z, %U) || F(s(%X), 0, %Y, %Z) -> F(%X, %Z, minus(%Y, s(%X)), %Z) || F(s(%X), s(%Y), %Z, %U) -> F(%X, %U, %Z, %U) || || The TRS R consists of the following rules: || || minus(0, %X) -> 0 || minus(s(%X), 0) -> s(%X) || minus(s(%X), s(%Y)) -> minus(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || perfectp(0) -> false || perfectp(s(%X)) -> f(%X, s(0), s(%X), s(%X)) || f(0, %X, 0, %Y) -> true || f(0, %X, s(%Y), %Z) -> false || f(s(%X), 0, %Y, %Z) -> f(%X, %Z, minus(%Y, s(%X)), %Z) || f(s(%X), s(%Y), %Z, %U) -> if(le(%X, %Y), f(s(%X), minus(%Y, %X), %Z, %U), f(%X, %U, %Z, %U)) || || The set Q consists of the following terms: || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || if(true, x0, x1) || if(false, x0, x1) || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (22) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (23) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X), s(%Y), %Z, %U) -> F(s(%X), minus(%Y, %X), %Z, %U) || F(s(%X), 0, %Y, %Z) -> F(%X, %Z, minus(%Y, s(%X)), %Z) || F(s(%X), s(%Y), %Z, %U) -> F(%X, %U, %Z, %U) || || The TRS R consists of the following rules: || || minus(0, %X) -> 0 || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(s(%X), 0) -> s(%X) || || The set Q consists of the following terms: || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || if(true, x0, x1) || if(false, x0, x1) || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (24) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || if(true, x0, x1) || if(false, x0, x1) || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || || ---------------------------------------- || || (25) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X), s(%Y), %Z, %U) -> F(s(%X), minus(%Y, %X), %Z, %U) || F(s(%X), 0, %Y, %Z) -> F(%X, %Z, minus(%Y, s(%X)), %Z) || F(s(%X), s(%Y), %Z, %U) -> F(%X, %U, %Z, %U) || || The TRS R consists of the following rules: || || minus(0, %X) -> 0 || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(s(%X), 0) -> s(%X) || || The set Q consists of the following terms: || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (26) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || F(s(%X), 0, %Y, %Z) -> F(%X, %Z, minus(%Y, s(%X)), %Z) || F(s(%X), s(%Y), %Z, %U) -> F(%X, %U, %Z, %U) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(F(x_1, x_2, x_3, x_4)) = x_1 || POL(minus(x_1, x_2)) = 0 || POL(s(x_1)) = 1 + x_1 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || none || || || ---------------------------------------- || || (27) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X), s(%Y), %Z, %U) -> F(s(%X), minus(%Y, %X), %Z, %U) || || The TRS R consists of the following rules: || || minus(0, %X) -> 0 || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(s(%X), 0) -> s(%X) || || The set Q consists of the following terms: || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (28) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || F(s(%X), s(%Y), %Z, %U) -> F(s(%X), minus(%Y, %X), %Z, %U) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: || || POL( F_4(x_1, ..., x_4) ) = max{0, 2x_2 + x_3 + x_4 - 1} || POL( minus_2(x_1, x_2) ) = x_1 || POL( 0 ) = 1 || POL( s_1(x_1) ) = x_1 + 1 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || minus(0, %X) -> 0 || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(s(%X), 0) -> s(%X) || || || ---------------------------------------- || || (29) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || minus(0, %X) -> 0 || minus(s(%X), s(%Y)) -> minus(%X, %Y) || minus(s(%X), 0) -> s(%X) || || The set Q consists of the following terms: || || minus(0, x0) || minus(s(x0), 0) || minus(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (30) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (31) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) 2] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 3] filter#(F, cons(X, Y)) =#> F(X) 4] filter2#(true, F, X, Y) =#> filter#(F, Y) 5] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: minus(0, X) => 0 minus(s(X), 0) => s(X) minus(s(X), s(Y)) => minus(X, Y) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) if(true, X, Y) => X if(false, X, Y) => Y perfectp(0) => false perfectp(s(X)) => f(X, s(0), s(X), s(X)) f(0, X, 0, Y) => true f(0, X, s(Y), Z) => false f(s(X), 0, Y, Z) => f(X, Z, minus(Y, s(X)), Z) f(s(X), s(Y), Z, U) => if(le(X, Y), f(s(X), minus(Y, X), Z, U), f(X, U, Z, U)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). The formative rules of (P_0, R_0) are R_1 ::= minus(0, X) => 0 minus(s(X), 0) => s(X) minus(s(X), s(Y)) => minus(X, Y) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) if(true, X, Y) => X if(false, X, Y) => Y perfectp(0) => false perfectp(s(X)) => f(X, s(0), s(X), s(X)) f(0, X, 0, Y) => true f(0, X, s(Y), Z) => false f(s(X), 0, Y, Z) => f(X, Z, minus(Y, s(X)), Z) f(s(X), s(Y), Z, U) => if(le(X, Y), f(s(X), minus(Y, X), Z, U), f(X, U, Z, U)) map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_0, R_1, minimal, formative). Thus, the original system is terminating if (P_0, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) minus(0, X) >= 0 minus(s(X), 0) >= s(X) minus(s(X), s(Y)) >= minus(X, Y) le(0, X) >= true le(s(X), 0) >= false le(s(X), s(Y)) >= le(X, Y) if(true, X, Y) >= X if(false, X, Y) >= Y perfectp(0) >= false perfectp(s(X)) >= f(X, s(0), s(X), s(X)) f(0, X, 0, Y) >= true f(0, X, s(Y), Z) >= false f(s(X), 0, Y, Z) >= f(X, Z, minus(Y, s(X)), Z) f(s(X), s(Y), Z, U) >= if(le(X, Y), f(s(X), minus(Y, X), Z, U), f(X, U, Z, U)) map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 cons = \y0y1.2 + y1 + 2y0 f = \y0y1y2y3.0 false = 0 filter = \G0y1.2y1 + G0(y1) + 2y1G0(y1) filter2 = \y0G1y2y3.2 + 2y0 + 2y2 + 2y3 + G1(y3) + 2y3G1(y3) filter2# = \y0G1y2y3.G1(0) + y3G1(y3) filter# = \G0y1.G0(0) + y1G0(y1) if = \y0y1y2.y1 + y2 le = \y0y1.3 map = \G0y1.2y1 + 2y1G0(y1) + 2G0(y1) map# = \G0y1.3 + y1 + G0(y1) + y1G0(y1) minus = \y0y1.3 + 2y0 + 2y1 perfectp = \y0.3 s = \y0.2y0 true = 0 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 5 + x2 + 2x1 + 2x1F0(2 + x2 + 2x1) + 3F0(2 + x2 + 2x1) + x2F0(2 + x2 + 2x1) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 5 + x2 + 2x1 + 2x1F0(2 + x2 + 2x1) + 3F0(2 + x2 + 2x1) + x2F0(2 + x2 + 2x1) > 3 + x2 + F0(x2) + x2F0(x2) = [[map#(_F0, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = F0(0) + 2x1F0(2 + x2 + 2x1) + 2F0(2 + x2 + 2x1) + x2F0(2 + x2 + 2x1) >= F0(0) + x2F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = F0(0) + 2x1F0(2 + x2 + 2x1) + 2F0(2 + x2 + 2x1) + x2F0(2 + x2 + 2x1) >= F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = F0(0) + x2F0(x2) >= F0(0) + x2F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = F0(0) + x2F0(x2) >= F0(0) + x2F0(x2) = [[filter#(_F0, _x2)]] [[minus(0, _x0)]] = 3 + 2x0 >= 0 = [[0]] [[minus(s(_x0), 0)]] = 3 + 4x0 >= 2x0 = [[s(_x0)]] [[minus(s(_x0), s(_x1))]] = 3 + 4x0 + 4x1 >= 3 + 2x0 + 2x1 = [[minus(_x0, _x1)]] [[le(0, _x0)]] = 3 >= 0 = [[true]] [[le(s(_x0), 0)]] = 3 >= 0 = [[false]] [[le(s(_x0), s(_x1))]] = 3 >= 3 = [[le(_x0, _x1)]] [[if(true, _x0, _x1)]] = x0 + x1 >= x0 = [[_x0]] [[if(false, _x0, _x1)]] = x0 + x1 >= x1 = [[_x1]] [[perfectp(0)]] = 3 >= 0 = [[false]] [[perfectp(s(_x0))]] = 3 >= 0 = [[f(_x0, s(0), s(_x0), s(_x0))]] [[f(0, _x0, 0, _x1)]] = 0 >= 0 = [[true]] [[f(0, _x0, s(_x1), _x2)]] = 0 >= 0 = [[false]] [[f(s(_x0), 0, _x1, _x2)]] = 0 >= 0 = [[f(_x0, _x2, minus(_x1, s(_x0)), _x2)]] [[f(s(_x0), s(_x1), _x2, _x3)]] = 0 >= 0 = [[if(le(_x0, _x1), f(s(_x0), minus(_x1, _x0), _x2, _x3), f(_x0, _x3, _x2, _x3))]] [[map(_F0, cons(_x1, _x2))]] = 4 + 2x2 + 4x1 + 2x2F0(2 + x2 + 2x1) + 4x1F0(2 + x2 + 2x1) + 6F0(2 + x2 + 2x1) >= 2 + 2x2 + 2x2F0(x2) + 2F0(x2) + 2max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, cons(_x1, _x2))]] = 4 + 2x2 + 4x1 + 2x2F0(2 + x2 + 2x1) + 4x1F0(2 + x2 + 2x1) + 5F0(2 + x2 + 2x1) >= 2 + 2x1 + 2x2 + F0(x2) + 2x2F0(x2) + 2max(x1, F0(x1)) = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 2 + 2x1 + 2x2 + F0(x2) + 2x2F0(x2) >= 2 + 2x1 + 2x2 + F0(x2) + 2x2F0(x2) = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 2 + 2x1 + 2x2 + F0(x2) + 2x2F0(x2) >= 2x2 + F0(x2) + 2x2F0(x2) = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_1, minimal, formative) by (P_1, R_1, minimal, formative), where P_1 consists of: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) =#> F(X) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: filter#(F, cons(X, Y)) >? filter2#(F X, F, X, Y) filter#(F, cons(X, Y)) >? F(X) filter2#(true, F, X, Y) >? filter#(F, Y) filter2#(false, F, X, Y) >? filter#(F, Y) minus(0, X) >= 0 minus(s(X), 0) >= s(X) minus(s(X), s(Y)) >= minus(X, Y) le(0, X) >= true le(s(X), 0) >= false le(s(X), s(Y)) >= le(X, Y) if(true, X, Y) >= X if(false, X, Y) >= Y perfectp(0) >= false perfectp(s(X)) >= f(X, s(0), s(X), s(X)) f(0, X, 0, Y) >= true f(0, X, s(Y), Z) >= false f(s(X), 0, Y, Z) >= f(X, Z, minus(Y, s(X)), Z) f(s(X), s(Y), Z, U) >= if(le(X, Y), f(s(X), minus(Y, X), Z, U), f(X, U, Z, U)) map(F, cons(X, Y)) >= cons(F X, map(F, Y)) filter(F, cons(X, Y)) >= filter2(F X, F, X, Y) filter2(true, F, X, Y) >= cons(X, filter(F, Y)) filter2(false, F, X, Y) >= filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 1 cons = \y0y1.1 + y0 + y1 f = \y0y1y2y3.0 false = 0 filter = \G0y1.y1 filter2 = \y0G1y2y3.1 + y2 + y3 filter2# = \y0G1y2y3.1 + y3G1(y3) filter# = \G0y1.1 + y1G0(y1) if = \y0y1y2.y1 + y2 le = \y0y1.3 map = \G0y1.y1 + 2y1G0(y1) minus = \y0y1.3 + 2y0 + 2y1 perfectp = \y0.3 + y0 s = \y0.2y0 true = 0 Using this interpretation, the requirements translate to: [[filter#(_F0, cons(_x1, _x2))]] = 1 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) >= 1 + x2F0(x2) = [[filter2#(_F0 _x1, _F0, _x1, _x2)]] [[filter#(_F0, cons(_x1, _x2))]] = 1 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[filter2#(true, _F0, _x1, _x2)]] = 1 + x2F0(x2) >= 1 + x2F0(x2) = [[filter#(_F0, _x2)]] [[filter2#(false, _F0, _x1, _x2)]] = 1 + x2F0(x2) >= 1 + x2F0(x2) = [[filter#(_F0, _x2)]] [[minus(0, _x0)]] = 5 + 2x0 >= 1 = [[0]] [[minus(s(_x0), 0)]] = 5 + 4x0 >= 2x0 = [[s(_x0)]] [[minus(s(_x0), s(_x1))]] = 3 + 4x0 + 4x1 >= 3 + 2x0 + 2x1 = [[minus(_x0, _x1)]] [[le(0, _x0)]] = 3 >= 0 = [[true]] [[le(s(_x0), 0)]] = 3 >= 0 = [[false]] [[le(s(_x0), s(_x1))]] = 3 >= 3 = [[le(_x0, _x1)]] [[if(true, _x0, _x1)]] = x0 + x1 >= x0 = [[_x0]] [[if(false, _x0, _x1)]] = x0 + x1 >= x1 = [[_x1]] [[perfectp(0)]] = 4 >= 0 = [[false]] [[perfectp(s(_x0))]] = 3 + 2x0 >= 0 = [[f(_x0, s(0), s(_x0), s(_x0))]] [[f(0, _x0, 0, _x1)]] = 0 >= 0 = [[true]] [[f(0, _x0, s(_x1), _x2)]] = 0 >= 0 = [[false]] [[f(s(_x0), 0, _x1, _x2)]] = 0 >= 0 = [[f(_x0, _x2, minus(_x1, s(_x0)), _x2)]] [[f(s(_x0), s(_x1), _x2, _x3)]] = 0 >= 0 = [[if(le(_x0, _x1), f(s(_x0), minus(_x1, _x0), _x2, _x3), f(_x0, _x3, _x2, _x3))]] [[map(_F0, cons(_x1, _x2))]] = 1 + x1 + x2 + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(1 + x1 + x2) >= 1 + x2 + 2x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, cons(_x1, _x2))]] = 1 + x1 + x2 >= 1 + x1 + x2 = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 1 + x1 + x2 >= 1 + x1 + x2 = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 1 + x1 + x2 >= x2 = [[filter(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_1, minimal, formative) by (P_2, R_1, minimal, formative), where P_2 consists of: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_2, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_1, minimal, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_1, minimal, f) by (P_3, R_1, minimal, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if (P_3, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.