We consider the system h00. Alphabet: 0 : [] --> c add : [] --> a -> c -> c cons : [] --> a -> b -> b fold : [] --> (a -> c -> c) -> c -> b -> c mul : [] --> a -> c -> c nil : [] --> b plus : [] --> c -> c -> c prod : [] --> b -> c s : [] --> c -> c sum : [] --> b -> c times : [] --> c -> c -> c Rules: fold (/\x./\y.f x y) z nil => z fold (/\x./\y.f x y) z (cons u v) => f u (fold (/\w./\x'.f w x') z v) plus 0 x => x plus (s x) y => s (plus x y) times 0 x => 0 times (s x) y => plus (times x y) y sum x => fold (/\y./\z.add y z) 0 x prod x => fold (/\y./\z.mul y z) (s 0) x Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: Alphabet: 0 : [] --> c add : [] --> a -> c -> c cons : [a * b] --> b fold : [a -> c -> c * c * b] --> c mul : [] --> a -> c -> c nil : [] --> b plus : [c * c] --> c prod : [b] --> c s : [c] --> c sum : [b] --> c times : [c * c] --> c ~AP1 : [a -> c -> c * a] --> c -> c Rules: fold(/\x./\y.~AP1(F, x) y, X, nil) => X fold(/\x./\y.~AP1(F, x) y, X, cons(Y, Z)) => ~AP1(F, Y) fold(/\z./\u.~AP1(F, z) u, X, Z) plus(0, X) => X plus(s(X), Y) => s(plus(X, Y)) times(0, X) => 0 times(s(X), Y) => plus(times(X, Y), Y) sum(X) => fold(/\x./\y.~AP1(add, x) y, 0, X) prod(X) => fold(/\x./\y.~AP1(mul, x) y, s(0), X) ~AP1(F, X) => F X Symbol ~AP1 is an encoding for application that is only used in innocuous ways. We can simplify the program (without losing non-termination) by removing it. This gives: Alphabet: 0 : [] --> c add : [a * c] --> c cons : [a * b] --> b fold : [a -> c -> c * c * b] --> c mul : [a * c] --> c nil : [] --> b plus : [c * c] --> c prod : [b] --> c s : [c] --> c sum : [b] --> c times : [c * c] --> c Rules: fold(/\x./\y.X(x, y), Y, nil) => Y fold(/\x./\y.X(x, y), Y, cons(Z, U)) => X(Z, fold(/\z./\u.X(z, u), Y, U)) plus(0, X) => X plus(s(X), Y) => s(plus(X, Y)) times(0, X) => 0 times(s(X), Y) => plus(times(X, Y), Y) sum(X) => fold(/\x./\y.add(x, y), 0, X) prod(X) => fold(/\x./\y.mul(x, y), s(0), X) We observe that the rules contain a first-order subset: plus(0, X) => X plus(s(X), Y) => s(plus(X, Y)) times(0, X) => 0 times(s(X), Y) => plus(times(X, Y), Y) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || times(0, %X) -> 0 || times(s(%X), %Y) -> plus(times(%X, %Y), %Y) || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Quasi precedence: || times_2 > plus_2 > s_1 || times_2 > 0 > s_1 || || || Status: || plus_2: multiset status || 0: multiset status || s_1: multiset status || times_2: multiset status || || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || plus(0, %X) -> %X || plus(s(%X), %Y) -> s(plus(%X, %Y)) || times(0, %X) -> 0 || times(s(%X), %Y) -> plus(times(%X, %Y), %Y) || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] fold#(/\x./\y.X(x, y), Y, cons(Z, U)) =#> X(Z, fold(/\z./\u.X(z, u), Y, U)) 1] fold#(/\x./\y.X(x, y), Y, cons(Z, U)) =#> fold#(/\z./\u.X(z, u), Y, U) {X : 2} 2] fold#(/\x./\y.X(x, y), Y, cons(Z, U)) =#> X(z, u) {X : 2} 3] sum#(X) =#> fold#(/\x./\y.add(x, y), 0, X) 4] prod#(X) =#> fold#(/\x./\y.mul(x, y), s(0), X) Rules R_0: fold(/\x./\y.X(x, y), Y, nil) => Y fold(/\x./\y.X(x, y), Y, cons(Z, U)) => X(Z, fold(/\z./\u.X(z, u), Y, U)) plus(0, X) => X plus(s(X), Y) => s(plus(X, Y)) times(0, X) => 0 times(s(X), Y) => plus(times(X, Y), Y) sum(X) => fold(/\x./\y.add(x, y), 0, X) prod(X) => fold(/\x./\y.mul(x, y), s(0), X) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). This combination (P_0, R_0) has no formative rules! We will name the empty set of rules:R_1. By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_0, R_1, minimal, formative). Thus, the original system is terminating if (P_0, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: fold#(/\x./\y.X(x, y), Y, cons(Z, U)) >? X(Z, fold(/\z./\u.X(z, u), Y, U)) fold#(/\x./\y.X(x, y), Y, cons(Z, U)) >? fold#(/\z./\u.X(z, u), Y, U) fold#(/\x./\y.X(x, y), Y, cons(Z, U)) >? X(~c0, ~c1) sum#(X) >? fold#(/\x./\y.add-(x, y), 0, X) prod#(X) >? fold#(/\x./\y.mul-(x, y), s(0), X) add-(X, Y) >= add(X, Y) mul-(X, Y) >= mul(X, Y) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( prod#(X) ) = #argfun-prod##(fold#(/\x./\y.mul-(x, y), s(0), X)) pi( sum#(X) ) = #argfun-sum##(fold#(/\x./\y.add-(x, y), 0, X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: #argfun-prod## = \y0.3 + y0 #argfun-sum## = \y0.3 + y0 0 = 0 add = \y0y1.0 add- = \y0y1.3 + 3y0 + 3y1 cons = \y0y1.3 + y0 + 3y1 fold = \G0y1y2.0 fold# = \G0y1y2.3 + y2 + 2y2y2G0(y2,y2) + 2G0(y2,y2) + 3y1y2G0(y1,y2) + 3y1y2G0(y2,y1) mul = \y0y1.0 mul- = \y0y1.3 + 3y0 + 3y1 prod# = \y0.0 s = \y0.0 sum# = \y0.0 ~c0 = 0 ~c1 = 0 Using this interpretation, the requirements translate to: [[fold#(/\x./\y._x0(x, y), _x1, cons(_x2, _x3))]] = 6 + x2 + 3x3 + 2x2x2F0(3 + x2 + 3x3,3 + x2 + 3x3) + 3x1x2F0(x1,3 + x2 + 3x3) + 3x1x2F0(3 + x2 + 3x3,x1) + 9x1x3F0(x1,3 + x2 + 3x3) + 9x1x3F0(3 + x2 + 3x3,x1) + 9x1F0(x1,3 + x2 + 3x3) + 9x1F0(3 + x2 + 3x3,x1) + 12x2x3F0(3 + x2 + 3x3,3 + x2 + 3x3) + 12x2F0(3 + x2 + 3x3,3 + x2 + 3x3) + 18x3x3F0(3 + x2 + 3x3,3 + x2 + 3x3) + 20F0(3 + x2 + 3x3,3 + x2 + 3x3) + 36x3F0(3 + x2 + 3x3,3 + x2 + 3x3) > F0(x2,0) = [[_x0(_x2, fold(/\x./\y._x0(x, y), _x1, _x3))]] [[fold#(/\x./\y._x0(x, y), _x1, cons(_x2, _x3))]] = 6 + x2 + 3x3 + 2x2x2F0(3 + x2 + 3x3,3 + x2 + 3x3) + 3x1x2F0(x1,3 + x2 + 3x3) + 3x1x2F0(3 + x2 + 3x3,x1) + 9x1x3F0(x1,3 + x2 + 3x3) + 9x1x3F0(3 + x2 + 3x3,x1) + 9x1F0(x1,3 + x2 + 3x3) + 9x1F0(3 + x2 + 3x3,x1) + 12x2x3F0(3 + x2 + 3x3,3 + x2 + 3x3) + 12x2F0(3 + x2 + 3x3,3 + x2 + 3x3) + 18x3x3F0(3 + x2 + 3x3,3 + x2 + 3x3) + 20F0(3 + x2 + 3x3,3 + x2 + 3x3) + 36x3F0(3 + x2 + 3x3,3 + x2 + 3x3) > 3 + x3 + 2x3x3F0(x3,x3) + 2F0(x3,x3) + 3x1x3F0(x1,x3) + 3x1x3F0(x3,x1) = [[fold#(/\x./\y._x0(x, y), _x1, _x3)]] [[fold#(/\x./\y._x0(x, y), _x1, cons(_x2, _x3))]] = 6 + x2 + 3x3 + 2x2x2F0(3 + x2 + 3x3,3 + x2 + 3x3) + 3x1x2F0(x1,3 + x2 + 3x3) + 3x1x2F0(3 + x2 + 3x3,x1) + 9x1x3F0(x1,3 + x2 + 3x3) + 9x1x3F0(3 + x2 + 3x3,x1) + 9x1F0(x1,3 + x2 + 3x3) + 9x1F0(3 + x2 + 3x3,x1) + 12x2x3F0(3 + x2 + 3x3,3 + x2 + 3x3) + 12x2F0(3 + x2 + 3x3,3 + x2 + 3x3) + 18x3x3F0(3 + x2 + 3x3,3 + x2 + 3x3) + 20F0(3 + x2 + 3x3,3 + x2 + 3x3) + 36x3F0(3 + x2 + 3x3,3 + x2 + 3x3) > F0(0,0) = [[_x0(~c0, ~c1)]] [[#argfun-sum##(fold#(/\x./\y.add-(x, y), 0, _x0))]] = 12 + 6x0x0 + 12x0x0x0 + 13x0 > 9 + 6x0x0 + 12x0x0x0 + 13x0 = [[fold#(/\x./\y.add-(x, y), 0, _x0)]] [[#argfun-prod##(fold#(/\x./\y.mul-(x, y), s(0), _x0))]] = 12 + 6x0x0 + 12x0x0x0 + 13x0 > 9 + 6x0x0 + 12x0x0x0 + 13x0 = [[fold#(/\x./\y.mul-(x, y), s(0), _x0)]] [[add-(_x0, _x1)]] = 3 + 3x0 + 3x1 >= 0 = [[add(_x0, _x1)]] [[mul-(_x0, _x1)]] = 3 + 3x0 + 3x1 >= 0 = [[mul(_x0, _x1)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_0, R_1) by ({}, R_1). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.