We consider the system h60. Alphabet: 0 : [] --> nat rec : [nat * a * nat -> a -> a] --> a s : [nat] --> nat xap : [nat -> a -> a * nat] --> a -> a yap : [a -> a * a] --> a Rules: rec(0, x, /\y./\z.yap(xap(f, y), z)) => x rec(s(x), y, /\z./\u.yap(xap(f, z), u)) => yap(xap(f, x), rec(x, y, /\v./\w.yap(xap(f, v), w))) xap(f, x) => f x yap(f, x) => f x This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). Symbol xap is an encoding for application that is only used in innocuous ways. We can simplify the program (without losing non-termination) by removing it. This gives: Alphabet: 0 : [] --> nat rec : [nat * a * nat -> a -> a] --> a s : [nat] --> nat yap : [a -> a * a] --> a Rules: rec(0, X, /\x./\y.yap(F(x), y)) => X rec(s(X), Y, /\x./\y.yap(F(x), y)) => yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) => F X We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, all): Dependency Pairs P_0: 0] rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) 1] rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> F(X) 2] rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) 3] rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> yap#(F(z), u) 4] rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> F(z) 5] yap#(F, X) =#> F(X) Rules R_0: rec(0, X, /\x./\y.yap(F(x), y)) => X rec(s(X), Y, /\x./\y.yap(F(x), y)) => yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) => F X Thus, the original system is terminating if (P_0, R_0, minimal, all) is finite. We consider the dependency pair problem (P_0, R_0, minimal, all). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 5 * 1 : 0, 1, 2, 3, 4, 5 * 2 : 0, 1, 2, 3, 4 * 3 : * 4 : 0, 1, 2, 3, 4, 5 * 5 : 0, 1, 2, 3, 4, 5 This graph has the following strongly connected components: P_1: rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> F(X) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> F(z) yap#(F, X) =#> F(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, all) is finite. We consider the dependency pair problem (P_1, R_0, minimal, all). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? F(X) ~c0 rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? rec#(X, Y, /\z./\u.yap(F(z), u)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? F(~c2) ~c1 yap#(F, X) >? F(X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) >= F X rec(X, Y, F) >= rec#(X, Y, F) yap(F, X) >= yap#(F, X) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( yap#(F, X) ) = #argfun-yap##(F X) Since this representation is not advantageous for the higher-order recursive path ordering, we present the strict requirements in their unextended form, which is not problematic since for any F, s and substituion gamma: (F s)gamma beta-reduces to F(s)gamma.) We use a recursive path ordering as defined in [Kop12, Chapter 5]. Argument functions: [[~c0]] = _|_ [[~c1]] = _|_ [[~c2]] = _|_ We choose Lex = {} and Mul = {#argfun-yap##, 0, @_{o -> o}, rec, rec#, s, yap, yap#}, and the following precedence: 0 > s > yap > rec = rec# > #argfun-yap## > @_{o -> o} > yap# Taking the argument function into account, and fixing the greater / greater equal choices, the constraints can be denoted as follows: rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) > @_{o -> o}(F(X), _|_) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= rec#(X, Y, /\x./\y.yap(F(x), y)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(_|_), _|_) #argfun-yap##(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) yap(F, X) >= @_{o -> o}(F, X) rec(X, Y, F) >= rec#(X, Y, F) yap(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) With these choices, we have: 1] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [2], by (Star) 2] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [3], by (Select) 3] yap(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [4], by (Star) 4] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because yap > #argfun-yap## and [5], by (Copy) 5] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap > @_{o -> o}, [6] and [12], by (Copy) 6] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= F(X) because [7], by (Select) 7] F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [8], by (Meta) 8] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [9], by (Select) 9] s(X) >= X because [10], by (Star) 10] s*(X) >= X because [11], by (Select) 11] X >= X by (Meta) 12] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= rec(X, Y, /\x./\y.yap(F(x), y)) because [13], by (Select) 13] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec# = rec, rec# in Mul, [14], [16] and [17], by (Stat) 14] s(X) > X because [15], by definition 15] s*(X) >= X because [11], by (Select) 16] Y >= Y by (Meta) 17] /\x./\z.yap(F(x), z) >= /\x./\z.yap(F(x), z) because [18], by (Abs) 18] /\z.yap(F(y), z) >= /\z.yap(F(y), z) because [19], by (Abs) 19] yap(F(y), x) >= yap(F(y), x) because yap in Mul, [20] and [22], by (Fun) 20] F(y) >= F(y) because [21], by (Meta) 21] y >= y by (Var) 22] x >= x by (Var) 23] rec#(s(X), Y, /\x./\y.yap(F(x), y)) > @_{o -> o}(F(X), _|_) because [24], by definition 24] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(X), _|_) because [25], by (Select) 25] yap(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(X), _|_) because [26], by (Star) 26] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(X), _|_) because yap > @_{o -> o}, [6] and [27], by (Copy) 27] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= _|_ by (Bot) 28] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= rec#(X, Y, /\x./\y.yap(F(x), y)) because rec# in Mul, [29], [16] and [17], by (Fun) 29] s(X) >= X because [15], by (Star) 30] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(_|_), _|_) because [31], by (Star) 31] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(_|_), _|_) because rec# > @_{o -> o}, [32] and [36], by (Copy) 32] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= F(_|_) because [33], by (Select) 33] /\x.yap(F(rec#*(s(X), Y, /\y./\z.yap(F(y), z))), x) >= F(_|_) because [34], by (Eta)[Kop13:2] 34] F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(_|_) because [35], by (Meta) 35] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= _|_ by (Bot) 36] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= _|_ by (Bot) 37] #argfun-yap##(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [38], by (Star) 38] #argfun-yap##*(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [39], by (Select) 39] @_{o -> o}(F, X) >= @_{o -> o}(F, X) because @_{o -> o} in Mul, [40] and [41], by (Fun) 40] F >= F by (Meta) 41] X >= X by (Meta) 42] rec(0, X, /\x./\y.yap(F(x), y)) >= X because [43], by (Star) 43] rec*(0, X, /\x./\y.yap(F(x), y)) >= X because [44], by (Select) 44] X >= X by (Meta) 45] rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [46], by (Star) 46] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [47], by (Select) 47] yap(F(rec*(s(X), Y, /\x./\y.yap(F(x), y))), rec*(s(X), Y, /\z./\u.yap(F(z), u))) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap in Mul, [48] and [50], by (Fun) 48] F(rec*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [49], by (Meta) 49] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [29], by (Select) 50] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec in Mul, [14], [16] and [17], by (Stat) 51] yap(F, X) >= @_{o -> o}(F, X) because [52], by (Star) 52] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [53] and [54], by (Copy) 53] yap*(F, X) >= F because [40], by (Select) 54] yap*(F, X) >= X because [41], by (Select) 55] rec(X, Y, F) >= rec#(X, Y, F) because rec = rec#, rec in Mul, [56], [57] and [58], by (Fun) 56] X >= X by (Meta) 57] Y >= Y by (Meta) 58] F >= F by (Meta) 59] yap(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because [60], by (Star) 60] yap*(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because yap > #argfun-yap## and [61], by (Copy) 61] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [62] and [64], by (Copy) 62] yap*(F, X) >= F because [63], by (Select) 63] F >= F by (Meta) 64] yap*(F, X) >= X because [65], by (Select) 65] X >= X by (Meta) By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_0, minimal, all) by (P_2, R_0, minimal, all), where P_2 consists of: rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> F(z) yap#(F, X) =#> F(X) Thus, the original system is terminating if (P_2, R_0, minimal, all) is finite. We consider the dependency pair problem (P_2, R_0, minimal, all). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? rec#(X, Y, /\z./\u.yap(F(z), u)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? F(~c1) ~c0 yap#(F, X) >? F(X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) >= F X rec(X, Y, F) >= rec#(X, Y, F) yap(F, X) >= yap#(F, X) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( yap#(F, X) ) = #argfun-yap##(F X) Since this representation is not advantageous for the higher-order recursive path ordering, we present the strict requirements in their unextended form, which is not problematic since for any F, s and substituion gamma: (F s)gamma beta-reduces to F(s)gamma.) We use a recursive path ordering as defined in [Kop12, Chapter 5]. Argument functions: [[#argfun-yap##(x_1)]] = x_1 [[~c0]] = _|_ [[~c1]] = _|_ We choose Lex = {} and Mul = {0, @_{o -> o}, rec, rec#, s, yap, yap#}, and the following precedence: 0 > s > yap > rec = rec# > @_{o -> o} > yap# Taking the argument function into account, and fixing the greater / greater equal choices, the constraints can be denoted as follows: rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= rec#(X, Y, /\x./\y.yap(F(x), y)) rec#(s(X), Y, /\x./\y.yap(F(x), y)) > @_{o -> o}(F(_|_), _|_) @_{o -> o}(F, X) >= @_{o -> o}(F, X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) yap(F, X) >= @_{o -> o}(F, X) rec(X, Y, F) >= rec#(X, Y, F) yap(F, X) >= @_{o -> o}(F, X) With these choices, we have: 1] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [2], by (Star) 2] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [3], by (Select) 3] yap(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [4], by (Star) 4] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap > @_{o -> o}, [5] and [11], by (Copy) 5] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= F(X) because [6], by (Select) 6] F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [7], by (Meta) 7] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [8], by (Select) 8] s(X) >= X because [9], by (Star) 9] s*(X) >= X because [10], by (Select) 10] X >= X by (Meta) 11] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= rec(X, Y, /\x./\y.yap(F(x), y)) because [12], by (Select) 12] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec# = rec, rec# in Mul, [13], [15] and [16], by (Stat) 13] s(X) > X because [14], by definition 14] s*(X) >= X because [10], by (Select) 15] Y >= Y by (Meta) 16] /\x./\z.yap(F(x), z) >= /\x./\z.yap(F(x), z) because [17], by (Abs) 17] /\z.yap(F(y), z) >= /\z.yap(F(y), z) because [18], by (Abs) 18] yap(F(y), x) >= yap(F(y), x) because yap in Mul, [19] and [21], by (Fun) 19] F(y) >= F(y) because [20], by (Meta) 20] y >= y by (Var) 21] x >= x by (Var) 22] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= rec#(X, Y, /\x./\y.yap(F(x), y)) because rec# in Mul, [23], [15] and [16], by (Fun) 23] s(X) >= X because [14], by (Star) 24] rec#(s(X), Y, /\x./\y.yap(F(x), y)) > @_{o -> o}(F(_|_), _|_) because [25], by definition 25] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= @_{o -> o}(F(_|_), _|_) because [26], by (Select) 26] yap(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(_|_), _|_) because [27], by (Star) 27] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(_|_), _|_) because yap > @_{o -> o}, [28] and [31], by (Copy) 28] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= F(_|_) because [29], by (Select) 29] F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(_|_) because [30], by (Meta) 30] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= _|_ by (Bot) 31] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= _|_ by (Bot) 32] @_{o -> o}(F, X) >= @_{o -> o}(F, X) because @_{o -> o} in Mul, [33] and [34], by (Fun) 33] F >= F by (Meta) 34] X >= X by (Meta) 35] rec(0, X, /\x./\y.yap(F(x), y)) >= X because [36], by (Star) 36] rec*(0, X, /\x./\y.yap(F(x), y)) >= X because [37], by (Select) 37] X >= X by (Meta) 38] rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [39], by (Star) 39] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [40], by (Select) 40] yap(F(rec*(s(X), Y, /\x./\y.yap(F(x), y))), rec*(s(X), Y, /\z./\u.yap(F(z), u))) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap in Mul, [41] and [43], by (Fun) 41] F(rec*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [42], by (Meta) 42] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [23], by (Select) 43] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec in Mul, [13], [15] and [16], by (Stat) 44] yap(F, X) >= @_{o -> o}(F, X) because [45], by (Star) 45] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [46] and [47], by (Copy) 46] yap*(F, X) >= F because [33], by (Select) 47] yap*(F, X) >= X because [34], by (Select) 48] rec(X, Y, F) >= rec#(X, Y, F) because rec = rec#, rec in Mul, [49], [50] and [51], by (Fun) 49] X >= X by (Meta) 50] Y >= Y by (Meta) 51] F >= F by (Meta) 52] yap(F, X) >= @_{o -> o}(F, X) because [53], by (Star) 53] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [54] and [56], by (Copy) 54] yap*(F, X) >= F because [55], by (Select) 55] F >= F by (Meta) 56] yap*(F, X) >= X because [57], by (Select) 57] X >= X by (Meta) By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_2, R_0, minimal, all) by (P_3, R_0, minimal, all), where P_3 consists of: rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) yap#(F, X) =#> F(X) Thus, the original system is terminating if (P_3, R_0, minimal, all) is finite. We consider the dependency pair problem (P_3, R_0, minimal, all). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? yap#(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) rec#(s(X), Y, /\x./\y.yap(F(x), y)) >? rec#(X, Y, /\z./\u.yap(F(z), u)) yap#(F, X) >? F(X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) >= F X rec(X, Y, F) >= rec#(X, Y, F) yap(F, X) >= yap#(F, X) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( yap#(F, X) ) = #argfun-yap##(F X) Since this representation is not advantageous for the higher-order recursive path ordering, we present the strict requirements in their unextended form, which is not problematic since for any F, s and substituion gamma: (F s)gamma beta-reduces to F(s)gamma.) We use a recursive path ordering as defined in [Kop12, Chapter 5]. We choose Lex = {} and Mul = {#argfun-yap##, 0, @_{o -> o}, rec, rec#, s, yap, yap#}, and the following precedence: 0 > rec = rec# > s > yap > #argfun-yap## > @_{o -> o} > yap# With these choices, we have: 1] rec#(s(X), Y, /\x./\y.yap(F(x), y)) > #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [2], by definition 2] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [3], by (Select) 3] yap(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because [4], by (Star) 4] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= #argfun-yap##(@_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y)))) because yap > #argfun-yap## and [5], by (Copy) 5] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= @_{o -> o}(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap > @_{o -> o}, [6] and [12], by (Copy) 6] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= F(X) because [7], by (Select) 7] F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [8], by (Meta) 8] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [9], by (Select) 9] s(X) >= X because [10], by (Star) 10] s*(X) >= X because [11], by (Select) 11] X >= X by (Meta) 12] yap*(F(rec#*(s(X), Y, /\x./\y.yap(F(x), y))), rec#*(s(X), Y, /\z./\u.yap(F(z), u))) >= rec(X, Y, /\x./\y.yap(F(x), y)) because [13], by (Select) 13] rec#*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec# = rec, rec# in Mul, [14], [16] and [17], by (Stat) 14] s(X) > X because [15], by definition 15] s*(X) >= X because [11], by (Select) 16] Y >= Y by (Meta) 17] /\x./\z.yap(F(x), z) >= /\x./\z.yap(F(x), z) because [18], by (Abs) 18] /\z.yap(F(y), z) >= /\z.yap(F(y), z) because [19], by (Abs) 19] yap(F(y), x) >= yap(F(y), x) because yap in Mul, [20] and [22], by (Fun) 20] F(y) >= F(y) because [21], by (Meta) 21] y >= y by (Var) 22] x >= x by (Var) 23] rec#(s(X), Y, /\x./\y.yap(F(x), y)) >= rec#(X, Y, /\x./\y.yap(F(x), y)) because rec# in Mul, [24], [16] and [17], by (Fun) 24] s(X) >= X because [15], by (Star) 25] #argfun-yap##(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [26], by (Star) 26] #argfun-yap##*(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [27], by (Select) 27] @_{o -> o}(F, X) >= @_{o -> o}(F, X) because @_{o -> o} in Mul, [28] and [29], by (Fun) 28] F >= F by (Meta) 29] X >= X by (Meta) 30] rec(0, X, /\x./\y.yap(F(x), y)) >= X because [31], by (Star) 31] rec*(0, X, /\x./\y.yap(F(x), y)) >= X because [32], by (Select) 32] X >= X by (Meta) 33] rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [34], by (Star) 34] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because rec > yap, [35] and [39], by (Copy) 35] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= F(X) because [36], by (Select) 36] /\x.yap(F(rec*(s(X), Y, /\y./\z.yap(F(y), z))), x) >= F(X) because [37], by (Eta)[Kop13:2] 37] F(rec*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [38], by (Meta) 38] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [24], by (Select) 39] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec in Mul, [14], [16] and [17], by (Stat) 40] yap(F, X) >= @_{o -> o}(F, X) because [41], by (Star) 41] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [42] and [43], by (Copy) 42] yap*(F, X) >= F because [28], by (Select) 43] yap*(F, X) >= X because [29], by (Select) 44] rec(X, Y, F) >= rec#(X, Y, F) because rec = rec#, rec in Mul, [45], [46] and [47], by (Fun) 45] X >= X by (Meta) 46] Y >= Y by (Meta) 47] F >= F by (Meta) 48] yap(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because [49], by (Star) 49] yap*(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because yap > #argfun-yap## and [50], by (Copy) 50] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [51] and [53], by (Copy) 51] yap*(F, X) >= F because [52], by (Select) 52] F >= F by (Meta) 53] yap*(F, X) >= X because [54], by (Select) 54] X >= X by (Meta) By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_3, R_0, minimal, all) by (P_4, R_0, minimal, all), where P_4 consists of: rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) yap#(F, X) =#> F(X) Thus, the original system is terminating if (P_4, R_0, minimal, all) is finite. We consider the dependency pair problem (P_4, R_0, minimal, all). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 0, 1 This graph has the following strongly connected components: P_5: rec#(s(X), Y, /\x./\y.yap(F(x), y)) =#> rec#(X, Y, /\z./\u.yap(F(z), u)) P_6: yap#(F, X) =#> F(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_4, R_0, m, f) by (P_5, R_0, m, f) and (P_6, R_0, m, f). Thus, the original system is terminating if each of (P_5, R_0, minimal, all) and (P_6, R_0, minimal, all) is finite. We consider the dependency pair problem (P_6, R_0, minimal, all). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: yap#(F, X) >? F(X) rec(0, X, /\x./\y.yap(F(x), y)) >= X rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\z./\u.yap(F(z), u))) yap(F, X) >= F X yap(F, X) >= yap#(F, X) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( yap#(F, X) ) = #argfun-yap##(F X) Since this representation is not advantageous for the higher-order recursive path ordering, we present the strict requirements in their unextended form, which is not problematic since for any F, s and substituion gamma: (F s)gamma beta-reduces to F(s)gamma.) We use a recursive path ordering as defined in [Kop12, Chapter 5]. We choose Lex = {} and Mul = {#argfun-yap##, 0, @_{o -> o}, rec, s, yap, yap#}, and the following precedence: 0 > s > yap > #argfun-yap## > rec > @_{o -> o} > yap# With these choices, we have: 1] #argfun-yap##(@_{o -> o}(F, X)) > @_{o -> o}(F, X) because [2], by definition 2] #argfun-yap##*(@_{o -> o}(F, X)) >= @_{o -> o}(F, X) because [3], by (Select) 3] @_{o -> o}(F, X) >= @_{o -> o}(F, X) because @_{o -> o} in Mul, [4] and [5], by (Fun) 4] F >= F by (Meta) 5] X >= X by (Meta) 6] rec(0, X, /\x./\y.yap(F(x), y)) >= X because [7], by (Star) 7] rec*(0, X, /\x./\y.yap(F(x), y)) >= X because [8], by (Select) 8] X >= X by (Meta) 9] rec(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [10], by (Star) 10] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because [11], by (Select) 11] yap(F(rec*(s(X), Y, /\x./\y.yap(F(x), y))), rec*(s(X), Y, /\z./\u.yap(F(z), u))) >= yap(F(X), rec(X, Y, /\x./\y.yap(F(x), y))) because yap in Mul, [12] and [17], by (Fun) 12] F(rec*(s(X), Y, /\x./\y.yap(F(x), y))) >= F(X) because [13], by (Meta) 13] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= X because [14], by (Select) 14] s(X) >= X because [15], by (Star) 15] s*(X) >= X because [16], by (Select) 16] X >= X by (Meta) 17] rec*(s(X), Y, /\x./\y.yap(F(x), y)) >= rec(X, Y, /\x./\y.yap(F(x), y)) because rec in Mul, [18], [20] and [21], by (Stat) 18] s(X) > X because [19], by definition 19] s*(X) >= X because [16], by (Select) 20] Y >= Y by (Meta) 21] /\x./\z.yap(F(x), z) >= /\x./\z.yap(F(x), z) because [22], by (Abs) 22] /\z.yap(F(y), z) >= /\z.yap(F(y), z) because [23], by (Abs) 23] yap(F(y), x) >= yap(F(y), x) because yap in Mul, [24] and [26], by (Fun) 24] F(y) >= F(y) because [25], by (Meta) 25] y >= y by (Var) 26] x >= x by (Var) 27] yap(F, X) >= @_{o -> o}(F, X) because [28], by (Star) 28] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [29] and [30], by (Copy) 29] yap*(F, X) >= F because [4], by (Select) 30] yap*(F, X) >= X because [5], by (Select) 31] yap(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because [32], by (Star) 32] yap*(F, X) >= #argfun-yap##(@_{o -> o}(F, X)) because yap > #argfun-yap## and [33], by (Copy) 33] yap*(F, X) >= @_{o -> o}(F, X) because yap > @_{o -> o}, [34] and [36], by (Copy) 34] yap*(F, X) >= F because [35], by (Select) 35] F >= F by (Meta) 36] yap*(F, X) >= X because [37], by (Select) 37] X >= X by (Meta) By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_6, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_5, R_0, minimal, all) is finite. We consider the dependency pair problem (P_5, R_0, minimal, all). We apply the subterm criterion with the following projection function: nu(rec#) = 1 Thus, we can orient the dependency pairs as follows: nu(rec#(s(X), Y, /\x./\y.yap(F(x), y))) = s(X) |> X = nu(rec#(X, Y, /\z./\u.yap(F(z), u))) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_5, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [Kop13:2] C. Kop. StarHorpo with an Eta-Rule. Unpublished manuscript, http://cl-informatik.uibk.ac.at/users/kop/etahorpo.pdf, 2013.