We consider the system AotoYamada_05__012. Alphabet: and : [c * c] --> c cons : [a * b] --> b false : [] --> c forall : [a -> c * b] --> c forsome : [a -> c * b] --> c nil : [] --> b or : [c * c] --> c true : [] --> c Rules: and(true, true) => true and(x, false) => false and(false, x) => false or(true, x) => true or(x, true) => true or(false, false) => false forall(f, nil) => true forall(f, cons(x, y)) => and(f x, forall(f, y)) forsome(f, nil) => false forsome(f, cons(x, y)) => or(f x, forsome(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: and(true, true) => true and(X, false) => false and(false, X) => false or(true, X) => true or(X, true) => true or(false, false) => false Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || and(true, true) -> true || and(%X, false) -> false || and(false, %X) -> false || or(true, %X) -> true || or(%X, true) -> true || or(false, false) -> false || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(and(x_1, x_2)) = 1 + 2*x_1 + x_2 || POL(false) = 2 || POL(or(x_1, x_2)) = 1 + 2*x_1 + 2*x_2 || POL(true) = 0 || POL(~PAIR(x_1, x_2)) = 2 + x_1 + x_2 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || and(true, true) -> true || and(%X, false) -> false || and(false, %X) -> false || or(true, %X) -> true || or(%X, true) -> true || or(false, false) -> false || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] forall#(F, cons(X, Y)) =#> and#(F X, forall(F, Y)) 1] forall#(F, cons(X, Y)) =#> F(X) 2] forall#(F, cons(X, Y)) =#> forall#(F, Y) 3] forsome#(F, cons(X, Y)) =#> or#(F X, forsome(F, Y)) 4] forsome#(F, cons(X, Y)) =#> F(X) 5] forsome#(F, cons(X, Y)) =#> forsome#(F, Y) Rules R_0: and(true, true) => true and(X, false) => false and(false, X) => false or(true, X) => true or(X, true) => true or(false, false) => false forall(F, nil) => true forall(F, cons(X, Y)) => and(F X, forall(F, Y)) forsome(F, nil) => false forsome(F, cons(X, Y)) => or(F X, forsome(F, Y)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : 0, 1, 2, 3, 4, 5 * 2 : 0, 1, 2 * 3 : * 4 : 0, 1, 2, 3, 4, 5 * 5 : 3, 4, 5 This graph has the following strongly connected components: P_1: forall#(F, cons(X, Y)) =#> F(X) forall#(F, cons(X, Y)) =#> forall#(F, Y) forsome#(F, cons(X, Y)) =#> F(X) forsome#(F, cons(X, Y)) =#> forsome#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). This combination (P_1, R_0) has no formative rules! We will name the empty set of rules:R_1. By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_1, R_1, minimal, formative). Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: forall#(F, cons(X, Y)) >? F(X) forall#(F, cons(X, Y)) >? forall#(F, Y) forsome#(F, cons(X, Y)) >? F(X) forsome#(F, cons(X, Y)) >? forsome#(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.3 + y0 + 2y1 forall# = \G0y1.3 + 2y1 + y1G0(y1) forsome# = \G0y1.3 + y1 + 2y1G0(y1) Using this interpretation, the requirements translate to: [[forall#(_F0, cons(_x1, _x2))]] = 9 + 2x1 + 4x2 + 2x2F0(3 + x1 + 2x2) + 3F0(3 + x1 + 2x2) + x1F0(3 + x1 + 2x2) > F0(x1) = [[_F0(_x1)]] [[forall#(_F0, cons(_x1, _x2))]] = 9 + 2x1 + 4x2 + 2x2F0(3 + x1 + 2x2) + 3F0(3 + x1 + 2x2) + x1F0(3 + x1 + 2x2) > 3 + 2x2 + x2F0(x2) = [[forall#(_F0, _x2)]] [[forsome#(_F0, cons(_x1, _x2))]] = 6 + x1 + 2x2 + 2x1F0(3 + x1 + 2x2) + 4x2F0(3 + x1 + 2x2) + 6F0(3 + x1 + 2x2) > F0(x1) = [[_F0(_x1)]] [[forsome#(_F0, cons(_x1, _x2))]] = 6 + x1 + 2x2 + 2x1F0(3 + x1 + 2x2) + 4x2F0(3 + x1 + 2x2) + 6F0(3 + x1 + 2x2) > 3 + x2 + 2x2F0(x2) = [[forsome#(_F0, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_1, R_1) by ({}, R_1). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.