We consider the system AotoYamada_05__013. Alphabet: append : [c * c] --> c cons : [b * c] --> c flatwith : [a -> b * b] --> c flatwithsub : [a -> b * c] --> c leaf : [a] --> b nil : [] --> c node : [c] --> b Rules: append(nil, x) => x append(cons(x, y), z) => cons(x, append(y, z)) flatwith(f, leaf(x)) => cons(f x, nil) flatwith(f, node(x)) => flatwithsub(f, x) flatwithsub(f, nil) => nil flatwithsub(f, cons(x, y)) => append(flatwith(f, x), flatwithsub(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(append(x_1, x_2)) = 2 + 2*x_1 + x_2 || POL(cons(x_1, x_2)) = 1 + 2*x_1 + x_2 || POL(nil) = 1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] flatwith#(F, leaf(X)) =#> F(X) 1] flatwith#(F, node(X)) =#> flatwithsub#(F, X) 2] flatwithsub#(F, cons(X, Y)) =#> append#(flatwith(F, X), flatwithsub(F, Y)) 3] flatwithsub#(F, cons(X, Y)) =#> flatwith#(F, X) 4] flatwithsub#(F, cons(X, Y)) =#> flatwithsub#(F, Y) Rules R_0: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) flatwith(F, leaf(X)) => cons(F X, nil) flatwith(F, node(X)) => flatwithsub(F, X) flatwithsub(F, nil) => nil flatwithsub(F, cons(X, Y)) => append(flatwith(F, X), flatwithsub(F, Y)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 2, 3, 4 * 1 : 2, 3, 4 * 2 : * 3 : 0, 1 * 4 : 2, 3, 4 This graph has the following strongly connected components: P_1: flatwith#(F, leaf(X)) =#> F(X) flatwith#(F, node(X)) =#> flatwithsub#(F, X) flatwithsub#(F, cons(X, Y)) =#> flatwith#(F, X) flatwithsub#(F, cons(X, Y)) =#> flatwithsub#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: flatwith#(F, leaf(X)) >? F(X) flatwith#(F, node(X)) >? flatwithsub#(F, X) flatwithsub#(F, cons(X, Y)) >? flatwith#(F, X) flatwithsub#(F, cons(X, Y)) >? flatwithsub#(F, Y) append(nil, X) >= X append(cons(X, Y), Z) >= cons(X, append(Y, Z)) flatwith(F, leaf(X)) >= cons(F X, nil) flatwith(F, node(X)) >= flatwithsub(F, X) flatwithsub(F, nil) >= nil flatwithsub(F, cons(X, Y)) >= append(flatwith(F, X), flatwithsub(F, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: append = \y0y1.y0 + y1 cons = \y0y1.1 + y1 + 2y0 flatwith = \G0y1.3y1 + 2y1G0(y1) flatwith# = \G0y1.1 + G0(y1) + 2y1G0(y1) flatwithsub = \G0y1.2y1 + 2y1G0(y1) flatwithsub# = \G0y1.1 + 2y1G0(y1) leaf = \y0.3 + 3y0 nil = 1 node = \y0.3 + y0 Using this interpretation, the requirements translate to: [[flatwith#(_F0, leaf(_x1))]] = 1 + 6x1F0(3 + 3x1) + 7F0(3 + 3x1) > F0(x1) = [[_F0(_x1)]] [[flatwith#(_F0, node(_x1))]] = 1 + 2x1F0(3 + x1) + 7F0(3 + x1) >= 1 + 2x1F0(x1) = [[flatwithsub#(_F0, _x1)]] [[flatwithsub#(_F0, cons(_x1, _x2))]] = 1 + 2x2F0(1 + x2 + 2x1) + 2F0(1 + x2 + 2x1) + 4x1F0(1 + x2 + 2x1) >= 1 + F0(x1) + 2x1F0(x1) = [[flatwith#(_F0, _x1)]] [[flatwithsub#(_F0, cons(_x1, _x2))]] = 1 + 2x2F0(1 + x2 + 2x1) + 2F0(1 + x2 + 2x1) + 4x1F0(1 + x2 + 2x1) >= 1 + 2x2F0(x2) = [[flatwithsub#(_F0, _x2)]] [[append(nil, _x0)]] = 1 + x0 >= x0 = [[_x0]] [[append(cons(_x0, _x1), _x2)]] = 1 + x1 + x2 + 2x0 >= 1 + x1 + x2 + 2x0 = [[cons(_x0, append(_x1, _x2))]] [[flatwith(_F0, leaf(_x1))]] = 9 + 9x1 + 6x1F0(3 + 3x1) + 6F0(3 + 3x1) >= 2 + 2max(x1, F0(x1)) = [[cons(_F0 _x1, nil)]] [[flatwith(_F0, node(_x1))]] = 9 + 3x1 + 2x1F0(3 + x1) + 6F0(3 + x1) >= 2x1 + 2x1F0(x1) = [[flatwithsub(_F0, _x1)]] [[flatwithsub(_F0, nil)]] = 2 + 2F0(1) >= 1 = [[nil]] [[flatwithsub(_F0, cons(_x1, _x2))]] = 2 + 2x2 + 4x1 + 2x2F0(1 + x2 + 2x1) + 2F0(1 + x2 + 2x1) + 4x1F0(1 + x2 + 2x1) >= 2x2 + 3x1 + 2x1F0(x1) + 2x2F0(x2) = [[append(flatwith(_F0, _x1), flatwithsub(_F0, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_2, R_0, minimal, formative), where P_2 consists of: flatwith#(F, node(X)) =#> flatwithsub#(F, X) flatwithsub#(F, cons(X, Y)) =#> flatwith#(F, X) flatwithsub#(F, cons(X, Y)) =#> flatwithsub#(F, Y) Thus, the original system is terminating if (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(flatwith#) = 2 nu(flatwithsub#) = 2 Thus, we can orient the dependency pairs as follows: nu(flatwith#(F, node(X))) = node(X) |> X = nu(flatwithsub#(F, X)) nu(flatwithsub#(F, cons(X, Y))) = cons(X, Y) |> X = nu(flatwith#(F, X)) nu(flatwithsub#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(flatwithsub#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.