We consider the system Applicative_first_order_05__13. Alphabet: !facplus : [a * a] --> a !factimes : [a * a] --> a cons : [c * d] --> d false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d map : [c -> c * d] --> d nil : [] --> d true : [] --> b Rules: !factimes(x, !facplus(y, z)) => !facplus(!factimes(x, y), !factimes(x, z)) !factimes(!facplus(x, y), z) => !facplus(!factimes(z, x), !factimes(z, y)) !factimes(!factimes(x, y), z) => !factimes(x, !factimes(y, z)) !facplus(!facplus(x, y), z) => !facplus(x, !facplus(y, z)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] !factimes#(X, !facplus(Y, Z)) =#> !facplus#(!factimes(X, Y), !factimes(X, Z)) 1] !factimes#(X, !facplus(Y, Z)) =#> !factimes#(X, Y) 2] !factimes#(X, !facplus(Y, Z)) =#> !factimes#(X, Z) 3] !factimes#(!facplus(X, Y), Z) =#> !facplus#(!factimes(Z, X), !factimes(Z, Y)) 4] !factimes#(!facplus(X, Y), Z) =#> !factimes#(Z, X) 5] !factimes#(!facplus(X, Y), Z) =#> !factimes#(Z, Y) 6] !factimes#(!factimes(X, Y), Z) =#> !factimes#(X, !factimes(Y, Z)) 7] !factimes#(!factimes(X, Y), Z) =#> !factimes#(Y, Z) 8] !facplus#(!facplus(X, Y), Z) =#> !facplus#(X, !facplus(Y, Z)) 9] !facplus#(!facplus(X, Y), Z) =#> !facplus#(Y, Z) 10] map#(F, cons(X, Y)) =#> map#(F, Y) 11] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 12] filter2#(true, F, X, Y) =#> filter#(F, Y) 13] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: !factimes(X, !facplus(Y, Z)) => !facplus(!factimes(X, Y), !factimes(X, Z)) !factimes(!facplus(X, Y), Z) => !facplus(!factimes(Z, X), !factimes(Z, Y)) !factimes(!factimes(X, Y), Z) => !factimes(X, !factimes(Y, Z)) !facplus(!facplus(X, Y), Z) => !facplus(X, !facplus(Y, Z)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 8, 9 * 1 : 0, 1, 2, 3, 4, 5, 6, 7 * 2 : 0, 1, 2, 3, 4, 5, 6, 7 * 3 : 8, 9 * 4 : 0, 1, 2, 3, 4, 5, 6, 7 * 5 : 0, 1, 2, 3, 4, 5, 6, 7 * 6 : 0, 1, 2, 3, 4, 5, 6, 7 * 7 : 0, 1, 2, 3, 4, 5, 6, 7 * 8 : 8, 9 * 9 : 8, 9 * 10 : 10 * 11 : 12, 13 * 12 : 11 * 13 : 11 This graph has the following strongly connected components: P_1: !factimes#(X, !facplus(Y, Z)) =#> !factimes#(X, Y) !factimes#(X, !facplus(Y, Z)) =#> !factimes#(X, Z) !factimes#(!facplus(X, Y), Z) =#> !factimes#(Z, X) !factimes#(!facplus(X, Y), Z) =#> !factimes#(Z, Y) !factimes#(!factimes(X, Y), Z) =#> !factimes#(X, !factimes(Y, Z)) !factimes#(!factimes(X, Y), Z) =#> !factimes#(Y, Z) P_2: !facplus#(!facplus(X, Y), Z) =#> !facplus#(X, !facplus(Y, Z)) !facplus#(!facplus(X, Y), Z) =#> !facplus#(Y, Z) P_3: map#(F, cons(X, Y)) =#> map#(F, Y) P_4: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f), (P_3, R_0, m, f) and (P_4, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative) and (P_4, R_0, computable, formative) is finite. We consider the dependency pair problem (P_4, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_4, R_0, computable, f) by (P_5, R_0, computable, f), where P_5 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative) and (P_5, R_0, computable, formative) is finite. We consider the dependency pair problem (P_5, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_3, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(!facplus#) = 1 Thus, we can orient the dependency pairs as follows: nu(!facplus#(!facplus(X, Y), Z)) = !facplus(X, Y) |> X = nu(!facplus#(X, !facplus(Y, Z))) nu(!facplus#(!facplus(X, Y), Z)) = !facplus(X, Y) |> Y = nu(!facplus#(Y, Z)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). The formative rules of (P_1, R_0) are R_1 ::= !factimes(X, !facplus(Y, Z)) => !facplus(!factimes(X, Y), !factimes(X, Z)) !factimes(!facplus(X, Y), Z) => !facplus(!factimes(Z, X), !factimes(Z, Y)) !factimes(!factimes(X, Y), Z) => !factimes(X, !factimes(Y, Z)) !facplus(!facplus(X, Y), Z) => !facplus(X, !facplus(Y, Z)) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_1, R_0, computable, formative) by (P_1, R_1, computable, formative). Thus, the original system is terminating if (P_1, R_1, computable, formative) is finite. We consider the dependency pair problem (P_1, R_1, computable, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: !factimes#(X, !facplus(Y, Z)) >? !factimes#(X, Y) !factimes#(X, !facplus(Y, Z)) >? !factimes#(X, Z) !factimes#(!facplus(X, Y), Z) >? !factimes#(Z, X) !factimes#(!facplus(X, Y), Z) >? !factimes#(Z, Y) !factimes#(!factimes(X, Y), Z) >? !factimes#(X, !factimes(Y, Z)) !factimes#(!factimes(X, Y), Z) >? !factimes#(Y, Z) !factimes(X, !facplus(Y, Z)) >= !facplus(!factimes(X, Y), !factimes(X, Z)) !factimes(!facplus(X, Y), Z) >= !facplus(!factimes(Z, X), !factimes(Z, Y)) !factimes(!factimes(X, Y), Z) >= !factimes(X, !factimes(Y, Z)) !facplus(!facplus(X, Y), Z) >= !facplus(X, !facplus(Y, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !facplus = \y0y1.2 + y1 + 2y0 !factimes = \y0y1.y0 + y1 + 2y0y1 !factimes# = \y0y1.y0 + y1 + 2y0y1 Using this interpretation, the requirements translate to: [[!factimes#(_x0, !facplus(_x1, _x2))]] = 2 + x2 + 2x0x2 + 2x1 + 4x0x1 + 5x0 > x0 + x1 + 2x0x1 = [[!factimes#(_x0, _x1)]] [[!factimes#(_x0, !facplus(_x1, _x2))]] = 2 + x2 + 2x0x2 + 2x1 + 4x0x1 + 5x0 > x0 + x2 + 2x0x2 = [[!factimes#(_x0, _x2)]] [[!factimes#(!facplus(_x0, _x1), _x2)]] = 2 + x1 + 2x0 + 2x1x2 + 4x0x2 + 5x2 > x0 + x2 + 2x0x2 = [[!factimes#(_x2, _x0)]] [[!factimes#(!facplus(_x0, _x1), _x2)]] = 2 + x1 + 2x0 + 2x1x2 + 4x0x2 + 5x2 > x1 + x2 + 2x1x2 = [[!factimes#(_x2, _x1)]] [[!factimes#(!factimes(_x0, _x1), _x2)]] = x0 + x1 + x2 + 2x0x1 + 2x0x2 + 2x1x2 + 4x0x1x2 >= x0 + x1 + x2 + 2x0x1 + 2x0x2 + 2x1x2 + 4x0x1x2 = [[!factimes#(_x0, !factimes(_x1, _x2))]] [[!factimes#(!factimes(_x0, _x1), _x2)]] = x0 + x1 + x2 + 2x0x1 + 2x0x2 + 2x1x2 + 4x0x1x2 >= x1 + x2 + 2x1x2 = [[!factimes#(_x1, _x2)]] [[!factimes(_x0, !facplus(_x1, _x2))]] = 2 + x2 + 2x0x2 + 2x1 + 4x0x1 + 5x0 >= 2 + x2 + 2x0x2 + 2x1 + 3x0 + 4x0x1 = [[!facplus(!factimes(_x0, _x1), !factimes(_x0, _x2))]] [[!factimes(!facplus(_x0, _x1), _x2)]] = 2 + x1 + 2x0 + 2x1x2 + 4x0x2 + 5x2 >= 2 + x1 + 2x0 + 2x1x2 + 3x2 + 4x0x2 = [[!facplus(!factimes(_x2, _x0), !factimes(_x2, _x1))]] [[!factimes(!factimes(_x0, _x1), _x2)]] = x0 + x1 + x2 + 2x0x1 + 2x0x2 + 2x1x2 + 4x0x1x2 >= x0 + x1 + x2 + 2x0x1 + 2x0x2 + 2x1x2 + 4x0x1x2 = [[!factimes(_x0, !factimes(_x1, _x2))]] [[!facplus(!facplus(_x0, _x1), _x2)]] = 6 + x2 + 2x1 + 4x0 >= 4 + x2 + 2x0 + 2x1 = [[!facplus(_x0, !facplus(_x1, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_1, computable, formative) by (P_6, R_1, computable, formative), where P_6 consists of: !factimes#(!factimes(X, Y), Z) =#> !factimes#(X, !factimes(Y, Z)) !factimes#(!factimes(X, Y), Z) =#> !factimes#(Y, Z) Thus, the original system is terminating if (P_6, R_1, computable, formative) is finite. We consider the dependency pair problem (P_6, R_1, computable, formative). We apply the subterm criterion with the following projection function: nu(!factimes#) = 1 Thus, we can orient the dependency pairs as follows: nu(!factimes#(!factimes(X, Y), Z)) = !factimes(X, Y) |> X = nu(!factimes#(X, !factimes(Y, Z))) nu(!factimes#(!factimes(X, Y), Z)) = !factimes(X, Y) |> Y = nu(!factimes#(Y, Z)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_6, R_1, computable, f) by ({}, R_1, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.