We consider the system Applicative_first_order_05__#3.25. Alphabet: cons : [c * d] --> d f : [a] --> a false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d g : [a] --> a h : [a] --> a map : [c -> c * d] --> d nil : [] --> d true : [] --> b Rules: f(g(x)) => g(f(f(x))) f(h(x)) => h(g(x)) map(i, nil) => nil map(i, cons(x, y)) => cons(i x, map(i, y)) filter(i, nil) => nil filter(i, cons(x, y)) => filter2(i x, i, x, y) filter2(true, i, x, y) => cons(x, filter(i, y)) filter2(false, i, x, y) => filter(i, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(g(X)) >? g(f(f(X))) f(h(X)) >? h(g(X)) map(F, nil) >? nil map(F, cons(X, Y)) >? cons(F X, map(F, Y)) filter(F, nil) >? nil filter(F, cons(X, Y)) >? filter2(F X, F, X, Y) filter2(true, F, X, Y) >? cons(X, filter(F, Y)) filter2(false, F, X, Y) >? filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.1 + y0 + y1 f = \y0.y0 false = 3 filter = \G0y1.2 + 2y1 + G0(0) + 2y1G0(y1) filter2 = \y0G1y2y3.1 + y0 + y2 + 2y3 + G1(0) + 2y3G1(y3) g = \y0.y0 h = \y0.y0 map = \G0y1.2 + 3y1 + 2y1G0(y1) + 2G0(y1) nil = 0 true = 3 Using this interpretation, the requirements translate to: [[f(g(_x0))]] = x0 >= x0 = [[g(f(f(_x0)))]] [[f(h(_x0))]] = x0 >= x0 = [[h(g(_x0))]] [[map(_F0, nil)]] = 2 + 2F0(0) > 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 5 + 3x1 + 3x2 + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 4F0(1 + x1 + x2) > 3 + x1 + 3x2 + F0(x1) + 2x2F0(x2) + 2F0(x2) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, nil)]] = 2 + F0(0) > 0 = [[nil]] [[filter(_F0, cons(_x1, _x2))]] = 4 + 2x1 + 2x2 + F0(0) + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(1 + x1 + x2) > 1 + 2x1 + 2x2 + F0(0) + F0(x1) + 2x2F0(x2) = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 4 + x1 + 2x2 + F0(0) + 2x2F0(x2) > 3 + x1 + 2x2 + F0(0) + 2x2F0(x2) = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 4 + x1 + 2x2 + F0(0) + 2x2F0(x2) > 2 + 2x2 + F0(0) + 2x2F0(x2) = [[filter(_F0, _x2)]] We can thus remove the following rules: map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] f#(g(X)) =#> f#(f(X)) 1] f#(g(X)) =#> f#(X) Rules R_0: f(g(X)) => g(f(f(X))) f(h(X)) => h(g(X)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). The formative rules of (P_0, R_0) are R_1 ::= f(g(X)) => g(f(f(X))) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, computable, formative) by (P_0, R_1, computable, formative). Thus, the original system is terminating if (P_0, R_1, computable, formative) is finite. We consider the dependency pair problem (P_0, R_1, computable, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: f#(g(X)) >? f#(f(X)) f#(g(X)) >? f#(X) f(g(X)) >= g(f(f(X))) We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable rules with respect to the following argument filtering: This leaves the following ordering requirements: f#(g(X)) > f#(f(X)) f#(g(X)) >= f#(X) f(g(X)) >= g(f(f(X))) The following interpretation satisfies the requirements: f = \y0.y0 f# = \y0.3y0 g = \y0.3 + 3y0 Using this interpretation, the requirements translate to: [[f#(g(_x0))]] = 9 + 9x0 > 3x0 = [[f#(f(_x0))]] [[f#(g(_x0))]] = 9 + 9x0 > 3x0 = [[f#(_x0)]] [[f(g(_x0))]] = 3 + 3x0 >= 3 + 3x0 = [[g(f(f(_x0)))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_0, R_1) by ({}, R_1). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.