We consider termination of the LCTRS with only rule scheme Calc: Signature: f :: Int -> Int -> Int h :: Int -> Int -> Int if1 :: Bool -> Int -> Int -> Int if2 :: Bool -> Int -> Int -> Int Rules: f(x, y) -> if1(x > y, x, y) h(x, y) -> if2(x > y, x, y) if1(true, x, y) -> h(x, y) if1(false, x, y) -> 0 if2(true, x, y) -> 0 if2(false, x, y) -> f(x, y) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, f, c), where: P1. (1) f#(x, y) => if1#(x > y, x, y) (2) h#(x, y) => if2#(x > y, x, y) (3) if1#(true, x, y) => h#(x, y) (4) if2#(false, x, y) => f#(x, y) ***** We apply the Theory Arguments Processor on D1 = (P1, R, f, c). We use the following theory arguments function: f# : [1, 2] h# : [1, 2] if1# : [1, 2, 3] if2# : [1, 2, 3] Processor output: { D2 = (P2, R, f, c) ; D3 = (P3, R, f, c) }, where: P2. (1) f#(x, y) => if1#(x > y, x, y) (2) h#(x, y) => if2#(x > y, x, y) { x, y } (3) if1#(true, x, y) => h#(x, y) { x, y } (4) if2#(false, x, y) => f#(x, y) { x, y } P3. (1) h#(x, y) => if2#(x > y, x, y) (2) if1#(true, x, y) => h#(x, y) (3) if2#(false, x, y) => f#(x, y) ***** We apply the Theory Arguments Processor on D2 = (P2, R, f, c). We use the following theory arguments function: f# : [1, 2] h# : [1, 2] if1# : [1, 2, 3] if2# : [1, 2, 3] Processor output: { D4 = (P4, R, f, c) ; D5 = (P5, R, f, c) }, where: P4. (1) f#(x, y) => if1#(x > y, x, y) { x, y } (2) h#(x, y) => if2#(x > y, x, y) { x, y } (3) if1#(true, x, y) => h#(x, y) { x, y } (4) if2#(false, x, y) => f#(x, y) { x, y } P5. (1) f#(x, y) => if1#(x > y, x, y) ***** We apply the Graph Processor on D3 = (P3, R, f, c). We compute a graph approximation with the following edges: 1: 3 2: 1 3: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** No progress could be made on DP problem D4 = (P4, R, f, c).