We consider termination of the LCTRS with only rule scheme Calc: Signature: condAcc :: Bool -> Int -> Int -> Int sqrt :: Int -> Int sqrtAcc :: Int -> Int -> Int Rules: sqrt(x) -> sqrtAcc(x, 0) sqrtAcc(x, y) -> condAcc(y * y >= x \/ y < 0, x, y) condAcc(true, x, y) -> y condAcc(false, x, y) -> sqrtAcc(x, y + 1) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, f, c), where: P1. (1) sqrt#(x) => sqrtAcc#(x, 0) (2) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) (3) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) ***** We apply the Graph Processor on D1 = (P1, R, f, c). We compute a graph approximation with the following edges: 1: 2 2: 3 3: 2 There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D2 = (P2, R, f, c) }, where: P2. (1) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) (2) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) ***** We apply the Theory Arguments Processor on D2 = (P2, R, f, c). We use the following theory arguments function: condAcc# : [1, 2, 3] sqrtAcc# : [1, 2] Processor output: { D3 = (P3, R, f, c) ; D4 = (P4, R, f, c) }, where: P3. (1) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) (2) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) { x, y } P4. (1) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) ***** We apply the Theory Arguments Processor on D3 = (P3, R, f, c). We use the following theory arguments function: condAcc# : [1, 2, 3] sqrtAcc# : [1, 2] Processor output: { D5 = (P5, R, f, c) ; D6 = (P6, R, f, c) }, where: P5. (1) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) { x, y } (2) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) { x, y } P6. (1) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) ***** We apply the Graph Processor on D4 = (P4, R, f, c). We compute a graph approximation with the following edges: 1: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** No progress could be made on DP problem D5 = (P5, R, f, c).