We consider termination of the LCTRS with only rule scheme Calc: Signature: eval_1 :: Int -> Int -> Int -> o eval_2 :: Int -> Int -> Int -> o Rules: eval_1(x, y, z) -> eval_2(x, y, z) | x > y eval_2(x, y, z) -> eval_1(x, y + 1, z) | x > z eval_2(x, y, z) -> eval_1(x, y, z + 1) | x > z eval_2(x, y, z) -> eval_1(x - 1, y, z) | z >= x The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, f, c), where: P1. (1) eval_1#(x, y, z) => eval_2#(x, y, z) | x > y (2) eval_2#(x, y, z) => eval_1#(x, y + 1, z) | x > z (3) eval_2#(x, y, z) => eval_1#(x, y, z + 1) | x > z (4) eval_2#(x, y, z) => eval_1#(x - 1, y, z) | z >= x ***** We apply the Theory Arguments Processor on D1 = (P1, R, f, c). We use the following theory arguments function: eval_1# : [1, 2, 3] eval_2# : [1, 2, 3] Processor output: { D2 = (P2, R, f, c) ; D3 = (P3, R, f, c) }, where: P2. (1) eval_1#(x, y, z) => eval_2#(x, y, z) | x > y (2) eval_2#(x, y, z) => eval_1#(x, y + 1, z) | x > z { x, y, z } (3) eval_2#(x, y, z) => eval_1#(x, y, z + 1) | x > z { x, y, z } (4) eval_2#(x, y, z) => eval_1#(x - 1, y, z) | z >= x { x, y, z } P3. (1) eval_2#(x, y, z) => eval_1#(x, y + 1, z) | x > z (2) eval_2#(x, y, z) => eval_1#(x, y, z + 1) | x > z (3) eval_2#(x, y, z) => eval_1#(x - 1, y, z) | z >= x ***** We apply the Theory Arguments Processor on D2 = (P2, R, f, c). We use the following theory arguments function: eval_1# : [1, 2, 3] eval_2# : [1, 2, 3] Processor output: { D4 = (P4, R, f, c) ; D5 = (P5, R, f, c) }, where: P4. (1) eval_1#(x, y, z) => eval_2#(x, y, z) | x > y { x, y, z } (2) eval_2#(x, y, z) => eval_1#(x, y + 1, z) | x > z { x, y, z } (3) eval_2#(x, y, z) => eval_1#(x, y, z + 1) | x > z { x, y, z } (4) eval_2#(x, y, z) => eval_1#(x - 1, y, z) | z >= x { x, y, z } P5. (1) eval_1#(x, y, z) => eval_2#(x, y, z) | x > y ***** We apply the Graph Processor on D3 = (P3, R, f, c). We compute a graph approximation with the following edges: 1: 2: 3: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** No progress could be made on DP problem D4 = (P4, R, f, c).