We consider termination of the LCTRS with only rule scheme Calc: Signature: eval_1 :: Int -> Int -> o eval_2 :: Int -> Int -> o Rules: eval_1(i, j) -> eval_2(i, 0) | i >= 0 eval_2(i, j) -> eval_2(i, j + 1) | j <= i - 1 eval_2(i, j) -> eval_1(i - 1, j) | j > i - 1 The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, f, c), where: P1. (1) eval_1#(i, j) => eval_2#(i, 0) | i >= 0 (2) eval_2#(i, j) => eval_2#(i, j + 1) | j <= i - 1 (3) eval_2#(i, j) => eval_1#(i - 1, j) | j > i - 1 ***** We apply the Theory Arguments Processor on D1 = (P1, R, f, c). We use the following theory arguments function: eval_2# : [1, 2] Processor output: { D2 = (P2, R, f, c) ; D3 = (P3, R, f, c) }, where: P2. (1) eval_1#(i, j) => eval_2#(i, 0) | i >= 0 { i, j } (2) eval_2#(i, j) => eval_2#(i, j + 1) | j <= i - 1 (3) eval_2#(i, j) => eval_1#(i - 1, j) | j > i - 1 P3. (1) eval_1#(i, j) => eval_2#(i, 0) | i >= 0 ***** We apply the Integer Function Processor on D2 = (P2, R, f, c). We use the following integer mapping: J(eval_1#) = arg_1 J(eval_2#) = arg_1 - 1 We thus have: (1) i >= 0 |= i > i - 1 (and i >= 0) (2) j <= i - 1 |= i - 1 >= i - 1 (3) j > i - 1 |= i - 1 >= i - 1 We may remove the strictly oriented DPs, which yields: Processor output: { D4 = (P4, R, f, c) }, where: P4. (1) eval_2#(i, j) => eval_2#(i, j + 1) | j <= i - 1 (2) eval_2#(i, j) => eval_1#(i - 1, j) | j > i - 1 ***** We apply the Graph Processor on D3 = (P3, R, f, c). We compute a graph approximation with the following edges: 1: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** We apply the Graph Processor on D4 = (P4, R, f, c). We compute a graph approximation with the following edges: 1: 1 2 2: There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D5 = (P5, R, f, c) }, where: P5. (1) eval_2#(i, j) => eval_2#(i, j + 1) | j <= i - 1 ***** We apply the Integer Function Processor on D5 = (P5, R, f, c). We use the following integer mapping: J(eval_2#) = arg_1 - 1 - arg_2 We thus have: (1) j <= i - 1 |= i - 1 - j > i - 1 - (j + 1) (and i - 1 - j >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.