We consider termination of the LCTRS with only rule scheme Calc: Signature: cond :: Bool -> Int -> Int -> Int minus :: Int -> Int -> Int Rules: minus(x, y) -> cond(x >= y + 1, x, y) cond(false, x, y) -> 0 cond(true, x, y) -> 1 + minus(x, y + 1) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, f, c), where: P1. (1) minus#(x, y) => cond#(x >= y + 1, x, y) (2) cond#(true, x, y) => minus#(x, y + 1) ***** We apply the Theory Arguments Processor on D1 = (P1, R, f, c). We use the following theory arguments function: cond# : [1, 2, 3] minus# : [1, 2] Processor output: { D2 = (P2, R, f, c) ; D3 = (P3, R, f, c) }, where: P2. (1) minus#(x, y) => cond#(x >= y + 1, x, y) (2) cond#(true, x, y) => minus#(x, y + 1) { x, y } P3. (1) cond#(true, x, y) => minus#(x, y + 1) ***** We apply the Theory Arguments Processor on D2 = (P2, R, f, c). We use the following theory arguments function: cond# : [1, 2, 3] minus# : [1, 2] Processor output: { D4 = (P4, R, f, c) ; D5 = (P5, R, f, c) }, where: P4. (1) minus#(x, y) => cond#(x >= y + 1, x, y) { x, y } (2) cond#(true, x, y) => minus#(x, y + 1) { x, y } P5. (1) minus#(x, y) => cond#(x >= y + 1, x, y) ***** We apply the Graph Processor on D3 = (P3, R, f, c). We compute a graph approximation with the following edges: 1: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** No progress could be made on DP problem D4 = (P4, R, f, c).