We consider termination of the LCTRS with only rule scheme Calc: Signature: eval_1 :: Int -> Int -> o eval_2 :: Int -> Int -> o eval_3 :: Int -> Int -> o Rules: eval_1(x, y) -> eval_2(x, y) | x > 0 /\ y > 0 /\ x > y eval_1(x, y) -> eval_3(x, y) | x > 0 /\ y > 0 /\ y >= x eval_2(x, y) -> eval_2(x - 1, y) | x > 0 eval_2(x, y) -> eval_1(x, y) | 0 >= x eval_3(x, y) -> eval_3(x, y - 1) | y > 0 eval_3(x, y) -> eval_1(x, y) | 0 >= y The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, f, c), where: P1. (1) eval_1#(x, y) => eval_2#(x, y) | x > 0 /\ y > 0 /\ x > y (2) eval_1#(x, y) => eval_3#(x, y) | x > 0 /\ y > 0 /\ y >= x (3) eval_2#(x, y) => eval_2#(x - 1, y) | x > 0 (4) eval_2#(x, y) => eval_1#(x, y) | 0 >= x (5) eval_3#(x, y) => eval_3#(x, y - 1) | y > 0 (6) eval_3#(x, y) => eval_1#(x, y) | 0 >= y ***** We apply the Graph Processor on D1 = (P1, R, f, c). We compute a graph approximation with the following edges: 1: 3 2: 5 3: 3 4 4: 5: 5 6 6: There are 2 SCCs. Processor output: { D2 = (P2, R, f, c) ; D3 = (P3, R, f, c) }, where: P2. (1) eval_2#(x, y) => eval_2#(x - 1, y) | x > 0 P3. (1) eval_3#(x, y) => eval_3#(x, y - 1) | y > 0 ***** We apply the Integer Function Processor on D2 = (P2, R, f, c). We use the following integer mapping: J(eval_2#) = arg_1 We thus have: (1) x > 0 |= x > x - 1 (and x >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Integer Function Processor on D3 = (P3, R, f, c). We use the following integer mapping: J(eval_3#) = arg_2 We thus have: (1) y > 0 |= y > y - 1 (and y >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.