We consider termination of the LCTRS with only rule scheme Calc: Signature: f :: Bool -> Int -> Int -> o fNat :: Bool -> Int -> Int -> o if :: Bool -> Int -> Int -> Int trunc :: Int -> Int Rules: f(true, x, y) -> fNat(x >= 0 /\ y >= 0, x, y) fNat(true, x, y) -> f(x > y, trunc(x), y + 1) trunc(x) -> if(x % 2 = 0, x, x - 1) if(true, u, v) -> u if(false, u, v) -> v The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) f#(true, x, y) => fNat#(x >= 0 /\ y >= 0, x, y) (2) fNat#(true, x, y) => trunc#(x) (3) fNat#(true, x, y) => f#(x > y, trunc(x), y + 1) (4) trunc#(x) => if#(x % 2 = 0, x, x - 1) ***** We apply the Graph Processor on D1 = (P1, R, i, c). We compute a graph approximation with the following edges: 1: 2 3 2: 4 3: 1 4: There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D2 = (P2, R, i, c) }, where: P2. (1) f#(true, x, y) => fNat#(x >= 0 /\ y >= 0, x, y) (2) fNat#(true, x, y) => f#(x > y, trunc(x), y + 1) ***** We apply the Theory Arguments Processor on D2 = (P2, R, i, c). We use the following theory arguments function: f# : [3] fNat# : [1, 2, 3] Processor output: { D3 = (P3, R, i, c) ; D4 = (P4, R, i, c) }, where: P3. (1) f#(true, x, y) => fNat#(x >= 0 /\ y >= 0, x, y) (2) fNat#(true, x, y) => f#(x > y, trunc(x), y + 1) | x = x /\ y = y P4. (1) fNat#(true, x, y) => f#(x > y, trunc(x), y + 1) ***** We apply the Theory Arguments Processor on D3 = (P3, R, i, c). We use the following theory arguments function: f# : [3] fNat# : [1, 2, 3] Processor output: { D5 = (P5, R, i, c) ; D6 = (P6, R, i, c) }, where: P5. (1) f#(true, x, y) => fNat#(x >= 0 /\ y >= 0, x, y) | y = y (2) fNat#(true, x, y) => f#(x > y, trunc(x), y + 1) | x = x /\ y = y P6. (1) f#(true, x, y) => fNat#(x >= 0 /\ y >= 0, x, y) ***** We apply the Graph Processor on D4 = (P4, R, i, c). We compute a graph approximation with the following edges: 1: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** We apply the Usable Rules Processor on D5 = (P5, R, i, c). We obtain 3 usable rules (out of 5 rules in the input problem). Processor output: { D7 = (P5, R2, i, c) }, where: R2. (1) if(true, u, v) -> u (2) if(false, u, v) -> v (3) trunc(x) -> if(x % 2 = 0, x, x - 1) ***** We apply the Graph Processor on D6 = (P6, R, i, c). We compute a graph approximation with the following edges: 1: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** No progress could be made on DP problem D7 = (P5, R2, i, c).