We consider termination of the LCTRS with only rule scheme Calc: Signature: eval_1 :: Int -> Int -> o eval_2 :: Int -> Int -> o Rules: eval_1(x, y) -> eval_2(x, 0) | x > 0 eval_2(x, y) -> eval_2(x, y + 1) | x > 0 /\ y >= 0 /\ x > y eval_2(x, y) -> eval_1(x - 1, y) | x > 0 /\ y >= 0 /\ y >= x The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) eval_1#(x, y) => eval_2#(x, 0) | x > 0 (2) eval_2#(x, y) => eval_2#(x, y + 1) | x > 0 /\ y >= 0 /\ x > y (3) eval_2#(x, y) => eval_1#(x - 1, y) | x > 0 /\ y >= 0 /\ y >= x ***** We apply the Chaining Processor Processor on D1 = (P1, R, i, c). We chain DPs according to the following mapping: eval_2#(x, y) => eval_2#(x - 1, 0) | x > 0 /\ y >= 0 /\ y >= x /\ x - 1 > 0 is obtained by chaining eval_2#(x, y) => eval_1#(x - 1, y) | x > 0 /\ y >= 0 /\ y >= x and eval_1#(x', y') => eval_2#(x', 0) | x' > 0 The following DPs were deleted: eval_2#(x, y) => eval_1#(x - 1, y) | x > 0 /\ y >= 0 /\ y >= x eval_1#(x, y) => eval_2#(x, 0) | x > 0 By chaining, we added 1 DPs and removed 2 DPs. Processor output: { D2 = (P2, R, i, c) }, where: P2. (1) eval_2#(x, y) => eval_2#(x, y + 1) | x > 0 /\ y >= 0 /\ x > y (2) eval_2#(x, y) => eval_2#(x - 1, 0) | x > 0 /\ y >= 0 /\ y >= x /\ x - 1 > 0 ***** We apply the Integer Function Processor on D2 = (P2, R, i, c). We use the following integer mapping: J(eval_2#) = arg_1 - 1 - 1 We thus have: (1) x > 0 /\ y >= 0 /\ x > y |= x - 1 - 1 >= x - 1 - 1 (2) x > 0 /\ y >= 0 /\ y >= x /\ x - 1 > 0 |= x - 1 - 1 > x - 1 - 1 - 1 (and x - 1 - 1 >= 0) We may remove the strictly oriented DPs, which yields: Processor output: { D3 = (P3, R, i, c) }, where: P3. (1) eval_2#(x, y) => eval_2#(x, y + 1) | x > 0 /\ y >= 0 /\ x > y ***** We apply the Integer Function Processor on D3 = (P3, R, i, c). We use the following integer mapping: J(eval_2#) = arg_1 - arg_2 - 1 We thus have: (1) x > 0 /\ y >= 0 /\ x > y |= x - y - 1 > x - (y + 1) - 1 (and x - y - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.