We consider termination of the LCTRS with only rule scheme Calc: Signature: eval :: Int -> Int -> Int -> o Rules: eval(x, y, z) -> eval(x - 1, y - 1, z) | x >= 0 /\ z * z * z >= y eval(x, y, z) -> eval(x, y - 1, z + y) | x >= 0 /\ z * z * z >= y The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) eval#(x, y, z) => eval#(x - 1, y - 1, z) | x >= 0 /\ z * z * z >= y (2) eval#(x, y, z) => eval#(x, y - 1, z + y) | x >= 0 /\ z * z * z >= y ***** We apply the Integer Function Processor on D1 = (P1, R, i, c). We use the following integer mapping: J(eval#) = arg_1 We thus have: (1) x >= 0 /\ z * z * z >= y |= x > x - 1 (and x >= 0) (2) x >= 0 /\ z * z * z >= y |= x >= x We may remove the strictly oriented DPs, which yields: Processor output: { D2 = (P2, R, i, c) }, where: P2. (1) eval#(x, y, z) => eval#(x, y - 1, z + y) | x >= 0 /\ z * z * z >= y ***** We apply the Usable Rules Processor on D2 = (P2, R, i, c). We obtain 0 usable rules (out of 2 rules in the input problem). Processor output: { D3 = (P2, {}, i, c) }. ***** No progress could be made on DP problem D3 = (P2, {}, i, c).