We consider universal computability of the LCTRS with only rule scheme Calc: Signature: eval :: Int -> Int -> o Rules: eval(x, y) -> eval(x - y, y) | x > y /\ x > 0 /\ y > 0 eval(x, y) -> eval(x - y, y) | y > x /\ x > 0 /\ y > 0 /\ x > y eval(x, y) -> eval(x, y - x) | x > y /\ x > 0 /\ y > 0 /\ y >= x eval(x, y) -> eval(x, y - x) | y > x /\ x > 0 /\ y > 0 /\ y >= x The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) eval#(x, y) => eval#(x - y, y) | x > y /\ x > 0 /\ y > 0 (2) eval#(x, y) => eval#(x - y, y) | y > x /\ x > 0 /\ y > 0 /\ x > y (3) eval#(x, y) => eval#(x, y - x) | x > y /\ x > 0 /\ y > 0 /\ y >= x (4) eval#(x, y) => eval#(x, y - x) | y > x /\ x > 0 /\ y > 0 /\ y >= x ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 1 4 2: 3: 4: 1 4 There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D2 = (P2, R UNION R_?, f, c) }, where: P2. (1) eval#(x, y) => eval#(x - y, y) | x > y /\ x > 0 /\ y > 0 (2) eval#(x, y) => eval#(x, y - x) | y > x /\ x > 0 /\ y > 0 /\ y >= x ***** We apply the Integer Function Processor on D2 = (P2, R UNION R_?, f, c). We use the following integer mapping: J(eval#) = arg_1 We thus have: (1) x > y /\ x > 0 /\ y > 0 |= x > x - y (and x >= 0) (2) y > x /\ x > 0 /\ y > 0 /\ y >= x |= x >= x We may remove the strictly oriented DPs, which yields: Processor output: { D3 = (P3, R UNION R_?, f, c) }, where: P3. (1) eval#(x, y) => eval#(x, y - x) | y > x /\ x > 0 /\ y > 0 /\ y >= x ***** We apply the Integer Function Processor on D3 = (P3, R UNION R_?, f, c). We use the following integer mapping: J(eval#) = arg_2 - arg_1 We thus have: (1) y > x /\ x > 0 /\ y > 0 /\ y >= x |= y - x > y - x - x (and y - x >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.