We consider universal computability of the LCTRS with only rule scheme Calc: Signature: gcd :: Int -> Int -> Int Rules: gcd(x, 0) -> x gcd(0, y) -> y gcd(x, y) -> gcd(x - y, y) | x >= y /\ y > 0 gcd(x, y) -> gcd(y - x, x) | y > x /\ x > 0 The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) gcd#(x, y) => gcd#(x - y, y) | x >= y /\ y > 0 (2) gcd#(x, y) => gcd#(y - x, x) | y > x /\ x > 0 ***** We apply the Integer Function Processor on D1 = (P1, R UNION R_?, f, c). We use the following integer mapping: J(gcd#) = arg_2 We thus have: (1) x >= y /\ y > 0 |= y >= y (2) y > x /\ x > 0 |= y > x (and y >= 0) We may remove the strictly oriented DPs, which yields: Processor output: { D2 = (P2, R UNION R_?, f, c) }, where: P2. (1) gcd#(x, y) => gcd#(x - y, y) | x >= y /\ y > 0 ***** We apply the Integer Function Processor on D2 = (P2, R UNION R_?, f, c). We use the following integer mapping: J(gcd#) = arg_1 - arg_2 We thus have: (1) x >= y /\ y > 0 |= x - y > x - y - y (and x - y >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.