We consider universal computability of the LCTRS with only rule scheme Calc: Signature: f :: Bool -> Int -> Int -> Int -> o g :: Bool -> Int -> Int -> Int -> o Rules: f(true, x, y, z) -> g(x > y, x, y, z) g(true, x, y, z) -> f(x > z, x, y + 1, z) g(true, x, y, z) -> f(x > z, x, y, z + 1) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) f#(true, x, y, z) => g#(x > y, x, y, z) (2) g#(true, x, y, z) => f#(x > z, x, y + 1, z) (3) g#(true, x, y, z) => f#(x > z, x, y, z + 1) ***** We apply the Theory Arguments Processor on D1 = (P1, R UNION R_?, f, c). We use the following theory arguments function: f# : [1, 2, 3, 4] g# : [1, 2, 3, 4] Processor output: { D2 = (P2, R UNION R_?, f, c) ; D3 = (P3, R UNION R_?, f, c) }, where: P2. (1) f#(true, x, y, z) => g#(x > y, x, y, z) (2) g#(true, x, y, z) => f#(x > z, x, y + 1, z) { x, y, z } (3) g#(true, x, y, z) => f#(x > z, x, y, z + 1) { x, y, z } P3. (1) g#(true, x, y, z) => f#(x > z, x, y + 1, z) (2) g#(true, x, y, z) => f#(x > z, x, y, z + 1) ***** We apply the Theory Arguments Processor on D2 = (P2, R UNION R_?, f, c). We use the following theory arguments function: f# : [1, 2, 3, 4] g# : [1, 2, 3, 4] Processor output: { D4 = (P4, R UNION R_?, f, c) ; D5 = (P5, R UNION R_?, f, c) }, where: P4. (1) f#(true, x, y, z) => g#(x > y, x, y, z) { x, y, z } (2) g#(true, x, y, z) => f#(x > z, x, y + 1, z) { x, y, z } (3) g#(true, x, y, z) => f#(x > z, x, y, z + 1) { x, y, z } P5. (1) f#(true, x, y, z) => g#(x > y, x, y, z) ***** We apply the Graph Processor on D3 = (P3, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 2: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** No progress could be made on DP problem D4 = (P4, R UNION R_?, f, c).