We consider universal computability of the LCTRS with only rule scheme Calc: Signature: cond :: Bool -> Int -> Int -> Int -> Int d :: Int -> Int -> Int -> Int dNat :: Bool -> Int -> Int -> Int -> Int div :: Int -> Int -> Int divNat :: Bool -> Int -> Int -> Int Rules: div(x, y) -> divNat(x >= 0 /\ y >= 1, x, y) divNat(true, x, y) -> d(x, y, 0) d(x, y, z) -> dNat(x >= 0 /\ y >= 1 /\ z >= 0, x, y, z) dNat(true, x, y, z) -> cond(x >= z, x, y - 1, z) cond(true, x, y, z) -> 1 + d(x, y + 1, y + 1 + z) cond(false, x, y, z) -> 0 The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) div#(x, y) => divNat#(x >= 0 /\ y >= 1, x, y) (2) divNat#(true, x, y) => d#(x, y, 0) (3) d#(x, y, z) => dNat#(x >= 0 /\ y >= 1 /\ z >= 0, x, y, z) (4) dNat#(true, x, y, z) => cond#(x >= z, x, y - 1, z) (5) cond#(true, x, y, z) => d#(x, y + 1, y + 1 + z) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 2 2: 3 3: 4 4: 5 5: 3 There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D2 = (P2, R UNION R_?, f, c) }, where: P2. (1) d#(x, y, z) => dNat#(x >= 0 /\ y >= 1 /\ z >= 0, x, y, z) (2) dNat#(true, x, y, z) => cond#(x >= z, x, y - 1, z) (3) cond#(true, x, y, z) => d#(x, y + 1, y + 1 + z) ***** We apply the Theory Arguments Processor on D2 = (P2, R UNION R_?, f, c). We use the following theory arguments function: cond# : [1, 2, 3, 4] d# : [1, 2, 3] dNat# : [1, 2, 3, 4] Processor output: { D3 = (P3, R UNION R_?, f, c) ; D4 = (P4, R UNION R_?, f, c) }, where: P3. (1) d#(x, y, z) => dNat#(x >= 0 /\ y >= 1 /\ z >= 0, x, y, z) (2) dNat#(true, x, y, z) => cond#(x >= z, x, y - 1, z) { x, y, z } (3) cond#(true, x, y, z) => d#(x, y + 1, y + 1 + z) { x, y, z } P4. (1) dNat#(true, x, y, z) => cond#(x >= z, x, y - 1, z) (2) cond#(true, x, y, z) => d#(x, y + 1, y + 1 + z) ***** We apply the Theory Arguments Processor on D3 = (P3, R UNION R_?, f, c). We use the following theory arguments function: cond# : [1, 2, 3, 4] d# : [1, 2, 3] dNat# : [1, 2, 3, 4] Processor output: { D5 = (P5, R UNION R_?, f, c) ; D6 = (P6, R UNION R_?, f, c) }, where: P5. (1) d#(x, y, z) => dNat#(x >= 0 /\ y >= 1 /\ z >= 0, x, y, z) { x, y, z } (2) dNat#(true, x, y, z) => cond#(x >= z, x, y - 1, z) { x, y, z } (3) cond#(true, x, y, z) => d#(x, y + 1, y + 1 + z) { x, y, z } P6. (1) d#(x, y, z) => dNat#(x >= 0 /\ y >= 1 /\ z >= 0, x, y, z) ***** We apply the Graph Processor on D4 = (P4, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 2 2: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** No progress could be made on DP problem D5 = (P5, R UNION R_?, f, c).