We consider universal computability of the LCTRS with only rule scheme Calc: Signature: sif :: Bool -> Int -> Int -> Int sum :: Int -> Int -> Int Rules: sum(x, y) -> sif(x >= y, x, y) sif(true, x, y) -> y + sum(x, y + 1) sif(false, x, y) -> 0 The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) sum#(x, y) => sif#(x >= y, x, y) (2) sif#(true, x, y) => sum#(x, y + 1) ***** We apply the Theory Arguments Processor on D1 = (P1, R UNION R_?, f, c). We use the following theory arguments function: sif# : [1, 2, 3] sum# : [1, 2] Processor output: { D2 = (P2, R UNION R_?, f, c) ; D3 = (P3, R UNION R_?, f, c) }, where: P2. (1) sum#(x, y) => sif#(x >= y, x, y) (2) sif#(true, x, y) => sum#(x, y + 1) { x, y } P3. (1) sif#(true, x, y) => sum#(x, y + 1) ***** We apply the Theory Arguments Processor on D2 = (P2, R UNION R_?, f, c). We use the following theory arguments function: sif# : [1, 2, 3] sum# : [1, 2] Processor output: { D4 = (P4, R UNION R_?, f, c) ; D5 = (P5, R UNION R_?, f, c) }, where: P4. (1) sum#(x, y) => sif#(x >= y, x, y) { x, y } (2) sif#(true, x, y) => sum#(x, y + 1) { x, y } P5. (1) sum#(x, y) => sif#(x >= y, x, y) ***** We apply the Graph Processor on D3 = (P3, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** No progress could be made on DP problem D4 = (P4, R UNION R_?, f, c).