We consider universal computability of the LCTRS with only rule scheme Calc: Signature: cond :: Bool -> Int -> Int -> Int log :: Int -> Int -> Int logNat :: Bool -> Int -> Int -> Int Rules: log(x, y) -> logNat(x >= 0 /\ y >= 2, x, y) logNat(true, x, y) -> cond(x <= y, x, y) cond(true, x, y) -> 1 cond(false, x, y) -> 2 * log(x, y * y) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) log#(x, y) => logNat#(x >= 0 /\ y >= 2, x, y) (2) logNat#(true, x, y) => cond#(x <= y, x, y) (3) cond#(false, x, y) => log#(x, y * y) ***** We apply the Theory Arguments Processor on D1 = (P1, R UNION R_?, f, c). We use the following theory arguments function: cond# : [1, 2, 3] log# : [1, 2] logNat# : [1, 2, 3] Processor output: { D2 = (P2, R UNION R_?, f, c) ; D3 = (P3, R UNION R_?, f, c) }, where: P2. (1) log#(x, y) => logNat#(x >= 0 /\ y >= 2, x, y) (2) logNat#(true, x, y) => cond#(x <= y, x, y) { x, y } (3) cond#(false, x, y) => log#(x, y * y) { x, y } P3. (1) logNat#(true, x, y) => cond#(x <= y, x, y) (2) cond#(false, x, y) => log#(x, y * y) ***** We apply the Theory Arguments Processor on D2 = (P2, R UNION R_?, f, c). We use the following theory arguments function: cond# : [1, 2, 3] log# : [1, 2] logNat# : [1, 2, 3] Processor output: { D4 = (P4, R UNION R_?, f, c) ; D5 = (P5, R UNION R_?, f, c) }, where: P4. (1) log#(x, y) => logNat#(x >= 0 /\ y >= 2, x, y) { x, y } (2) logNat#(true, x, y) => cond#(x <= y, x, y) { x, y } (3) cond#(false, x, y) => log#(x, y * y) { x, y } P5. (1) log#(x, y) => logNat#(x >= 0 /\ y >= 2, x, y) ***** We apply the Graph Processor on D3 = (P3, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 2 2: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** No progress could be made on DP problem D4 = (P4, R UNION R_?, f, c).