We consider universal computability of the LCTRS with only rule scheme Calc: Signature: eval :: Int -> Int -> Int -> o Rules: eval(x, y, z) -> eval(x + 1, y, z) | y > x /\ z > x eval(x, y, z) -> eval(x, y, z + 1) | y > x /\ x >= z The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) eval#(x, y, z) => eval#(x + 1, y, z) | y > x /\ z > x (2) eval#(x, y, z) => eval#(x, y, z + 1) | y > x /\ x >= z ***** We apply the Integer Function Processor on D1 = (P1, R UNION R_?, f, c). We use the following integer mapping: J(eval#) = arg_2 - arg_1 - 1 We thus have: (1) y > x /\ z > x |= y - x - 1 > y - (x + 1) - 1 (and y - x - 1 >= 0) (2) y > x /\ x >= z |= y - x - 1 >= y - x - 1 We may remove the strictly oriented DPs, which yields: Processor output: { D2 = (P2, R UNION R_?, f, c) }, where: P2. (1) eval#(x, y, z) => eval#(x, y, z + 1) | y > x /\ x >= z ***** We apply the Integer Function Processor on D2 = (P2, R UNION R_?, f, c). We use the following integer mapping: J(eval#) = arg_1 - arg_3 We thus have: (1) y > x /\ x >= z |= x - z > x - (z + 1) (and x - z >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.