We consider universal computability of the LCTRS with only rule scheme Calc: Signature: cond1 :: Bool -> Int -> Int -> Int cond2 :: Bool -> Int -> Int -> Int diff :: Int -> Int -> Int Rules: diff(x, y) -> cond1(x = y, x, y) cond1(true, x, y) -> 0 cond1(false, x, y) -> cond2(x > y, x, y) cond2(true, x, y) -> 1 + diff(x, y + 1) cond2(false, x, y) -> 1 + diff(x + 1, y) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) diff#(x, y) => cond1#(x = y, x, y) (2) cond1#(false, x, y) => cond2#(x > y, x, y) (3) cond2#(true, x, y) => diff#(x, y + 1) (4) cond2#(false, x, y) => diff#(x + 1, y) ***** We apply the Theory Arguments Processor on D1 = (P1, R UNION R_?, f, c). We use the following theory arguments function: cond1# : [1, 2, 3] cond2# : [1, 2, 3] diff# : [1, 2] Processor output: { D2 = (P2, R UNION R_?, f, c) ; D3 = (P3, R UNION R_?, f, c) }, where: P2. (1) diff#(x, y) => cond1#(x = y, x, y) (2) cond1#(false, x, y) => cond2#(x > y, x, y) { x, y } (3) cond2#(true, x, y) => diff#(x, y + 1) { x, y } (4) cond2#(false, x, y) => diff#(x + 1, y) { x, y } P3. (1) cond1#(false, x, y) => cond2#(x > y, x, y) (2) cond2#(true, x, y) => diff#(x, y + 1) (3) cond2#(false, x, y) => diff#(x + 1, y) ***** We apply the Theory Arguments Processor on D2 = (P2, R UNION R_?, f, c). We use the following theory arguments function: cond1# : [1, 2, 3] cond2# : [1, 2, 3] diff# : [1, 2] Processor output: { D4 = (P4, R UNION R_?, f, c) ; D5 = (P5, R UNION R_?, f, c) }, where: P4. (1) diff#(x, y) => cond1#(x = y, x, y) { x, y } (2) cond1#(false, x, y) => cond2#(x > y, x, y) { x, y } (3) cond2#(true, x, y) => diff#(x, y + 1) { x, y } (4) cond2#(false, x, y) => diff#(x + 1, y) { x, y } P5. (1) diff#(x, y) => cond1#(x = y, x, y) ***** We apply the Graph Processor on D3 = (P3, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 2 3 2: 3: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** No progress could be made on DP problem D4 = (P4, R UNION R_?, f, c).