We consider universal computability of the LCTRS with only rule scheme Calc: Signature: eval_0 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> o -> Int -> Int -> o -> o eval_1 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> o -> Int -> Int -> Bool -> o eval_10 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_11 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_12 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_13 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_14 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_15 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_16 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_17 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_18 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_19 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_2 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_20 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_21 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_22 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_23 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_24 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_25 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_26 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_27 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_28 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_29 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_3 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_30 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_31 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_32 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_33 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_34 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_35 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_36 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_37 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_38 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_39 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_4 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_40 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_41 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_42 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_43 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_44 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_45 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_46 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_47 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_48 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_49 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_5 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_50 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_51 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_52 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_53 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_6 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_7 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_8 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_9 :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o eval_end :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Bool -> o Rules: eval_0(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_1(n, i, j, k, l, t, h, m, p, q, r, true) | n > 0 eval_1(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_2(n, i, j, k, l, t, h, m, 1, q, r, up) eval_2(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_3(n, i, j, k, l, t, h, m, p, q, r, up) eval_3(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_4(n, i, j, k, l, t, 1, m, p, q, r, up) eval_4(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_5(n, i, j, k, l, t, h, n, p, q, r, up) eval_5(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_6(n, i, j, k, l, t, h, m, p, q, r, up) | up eval_6(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_7(n, 1, j, k, l, t, h, m, p, q, r, up) eval_7(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_8(n, i, n, k, l, t, h, m, p, q, r, up) eval_8(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_9(n, i, j, n + 1, l, t, h, n, p, q, r, up) eval_9(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_14(n, i, j, k, 2 * n, t, h, n, p, q, r, up) eval_5(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_10(n, i, j, k, l, t, h, m, p, q, r, up) | not up eval_10(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_11(n, i, j, 1, l, t, h, m, p, q, r, up) eval_11(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_12(n, i, j, k, n, t, h, m, p, q, r, up) eval_12(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_13(n, n + 1, j, k, l, t, h, m, p, q, r, up) eval_13(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_14(n, i, 2 * n, k, l, t, h, m, p, q, r, up) eval_14(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_15(n, i, j, k, l, t, h, m, p, q, r, up) eval_15(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_16(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p eval_16(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_18(n, i, j, k, l, t, h, m, p, p, r, up) eval_15(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_17(n, i, j, k, l, t, h, m, p, q, r, up) | m < p eval_17(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_18(n, i, j, k, l, t, h, m, p, m, r, up) eval_18(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_19(n, i, j, k, l, t, h, m - q, p, q, r, up) eval_19(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_20(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p eval_20(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_22(n, i, j, k, l, t, h, m, p, q, p, up) eval_19(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_21(n, i, j, k, l, t, h, m, p, q, r, up) | m < p eval_21(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_22(n, i, j, k, l, t, h, m, p, q, m, up) eval_22(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_23(n, i, j, k, l, t, h, m - r, p, q, r, up) eval_23(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_24(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 /\ r > 0 eval_24(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_25(n, i, j, k, l, t, h, m, p, q, r, up) eval_25(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_26(n, i, j, k, l, t, h, m, p, q, r, up) eval_26(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_27(n, i, j, k + h, l, t, h, m, p, q, r, up) eval_27(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_28(n, i + 1, j, k, l, t, h, m, p, q, r, up) eval_28(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_23(n, i, j, k, l, t, h, m, p, q - 1, r, up) eval_24(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_29(n, i, j, k, l, t, h, m, p, q, r, up) eval_29(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_30(n, i, j, k, l, t, h, m, p, q, r, up) eval_30(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_31(n, i, j, k + h, l, t, h, m, p, q, r, up) eval_31(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_32(n, i, j - 1, k, l, t, h, m, p, q, r, up) eval_32(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_23(n, i, j, k, l, t, h, m, p, q, r - 1, up) eval_23(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_33(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 \/ r <= 0 eval_33(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_34(n, i, j, k, l, t, h, m, p, q, r, up) | r > 0 eval_34(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_35(n, i, j, k, l, t, h, m, p, q, r, up) eval_35(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_36(n, i, j, k + h, l, t, h, m, p, q, r, up) eval_36(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_37(n, i, j - 1, k, l, t, h, m, p, q, r, up) eval_37(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_33(n, i, j, k, l, t, h, m, p, q, r - 1, up) eval_33(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_38(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 eval_38(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_39(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 eval_39(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_40(n, i, j, k, l, t, h, m, p, q, r, up) eval_40(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_41(n, i, j, k + h, l, t, h, m, p, q, r, up) eval_41(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_42(n, i + 1, j, k, l, t, h, m, p, q, r, up) eval_42(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_38(n, i, j, k, l, t, h, m, p, q - 1, r, up) eval_38(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_43(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 eval_43(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_44(n, i, j, k, l, t, -h, m, p, q, r, up) eval_44(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_45(n, i, j, k, l, k, h, m, p, q, r, up) eval_45(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_46(n, i, j, l, l, t, h, m, p, q, r, up) eval_46(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_47(n, i, j, k, t, t, h, m, p, q, r, up) | m <= 0 eval_46(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_14(n, i, j, k, l, t, h, m, p, q, r, up) | m > 0 eval_47(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_48(n, i, j, k, l, t, h, m, p, q, r, not up) eval_48(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_49(n, i, j, k, l, t, h, m, 2 * p, q, r, up) | p >= n eval_48(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_2(n, i, j, k, l, t, h, m, p, q, r, up) | p < n eval_49(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_50(n, i, j, k, l, t, h, m, p, q, r, up) | not up eval_50(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_51(n, 1, j, k, l, t, h, m, p, q, r, up) eval_51(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_52(n, i, j, k, l, t, h, m, p, q, r, up) | i <= n eval_52(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_53(n, i, j, k, l, t, h, m, p, q, r, up) eval_53(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_51(n, i + 1, j, k, l, t, h, m, p, q, r, up) eval_51(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_end(n, i, j, k, l, t, h, m, p, q, r, up) | i > n eval_49(n, i, j, k, l, t, h, m, p, q, r, up) -> eval_end(n, i, j, k, l, t, h, m, p, q, r, up) | up The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) eval_0#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_1#(n, i, j, k, l, t, h, m, p, q, r, true) | n > 0 (2) eval_1#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_2#(n, i, j, k, l, t, h, m, 1, q, r, up) (3) eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) (4) eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_4#(n, i, j, k, l, t, 1, m, p, q, r, up) (5) eval_4#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_5#(n, i, j, k, l, t, h, n, p, q, r, up) (6) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) | up (7) eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_7#(n, 1, j, k, l, t, h, m, p, q, r, up) (8) eval_7#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_8#(n, i, n, k, l, t, h, m, p, q, r, up) (9) eval_8#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_9#(n, i, j, n + 1, l, t, h, n, p, q, r, up) (10) eval_9#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, 2 * n, t, h, n, p, q, r, up) (11) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) | not up (12) eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_11#(n, i, j, 1, l, t, h, m, p, q, r, up) (13) eval_11#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_12#(n, i, j, k, n, t, h, m, p, q, r, up) (14) eval_12#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_13#(n, n + 1, j, k, l, t, h, m, p, q, r, up) (15) eval_13#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, 2 * n, k, l, t, h, m, p, q, r, up) (16) eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) (17) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p (18) eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, p, r, up) (19) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p (20) eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, m, r, up) (21) eval_18#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_19#(n, i, j, k, l, t, h, m - q, p, q, r, up) (22) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p (23) eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, p, up) (24) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p (25) eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, m, up) (26) eval_22#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m - r, p, q, r, up) (27) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 /\ r > 0 (28) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) (29) eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) (30) eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_27#(n, i, j, k + h, l, t, h, m, p, q, r, up) (31) eval_27#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_28#(n, i + 1, j, k, l, t, h, m, p, q, r, up) (32) eval_28#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q - 1, r, up) (33) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) (34) eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) (35) eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_31#(n, i, j, k + h, l, t, h, m, p, q, r, up) (36) eval_31#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_32#(n, i, j - 1, k, l, t, h, m, p, q, r, up) (37) eval_32#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q, r - 1, up) (38) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 \/ r <= 0 (39) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) | r > 0 (40) eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) (41) eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_36#(n, i, j, k + h, l, t, h, m, p, q, r, up) (42) eval_36#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_37#(n, i, j - 1, k, l, t, h, m, p, q, r, up) (43) eval_37#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r - 1, up) (44) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 (45) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 (46) eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) (47) eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_41#(n, i, j, k + h, l, t, h, m, p, q, r, up) (48) eval_41#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_42#(n, i + 1, j, k, l, t, h, m, p, q, r, up) (49) eval_42#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q - 1, r, up) (50) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 (51) eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_44#(n, i, j, k, l, t, -h, m, p, q, r, up) (52) eval_44#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_45#(n, i, j, k, l, k, h, m, p, q, r, up) (53) eval_45#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_46#(n, i, j, l, l, t, h, m, p, q, r, up) (54) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_47#(n, i, j, k, t, t, h, m, p, q, r, up) | m <= 0 (55) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) | m > 0 (56) eval_47#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_48#(n, i, j, k, l, t, h, m, p, q, r, not up) (57) eval_48#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_49#(n, i, j, k, l, t, h, m, 2 * p, q, r, up) | p >= n (58) eval_48#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) | p < n (59) eval_49#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_50#(n, i, j, k, l, t, h, m, p, q, r, up) | not up (60) eval_50#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_51#(n, 1, j, k, l, t, h, m, p, q, r, up) (61) eval_51#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) | i <= n (62) eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) (63) eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_51#(n, i + 1, j, k, l, t, h, m, p, q, r, up) ***** We apply the Constraint Modification Processor on D1 = (P1, R UNION R_?, f, c). We replace eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 \/ r <= 0 by: eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 { r, q } eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 { r, q } Processor output: { D2 = (P2, R UNION R_?, f, c) }, where: P2. (1) eval_0#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_1#(n, i, j, k, l, t, h, m, p, q, r, true) | n > 0 (2) eval_1#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_2#(n, i, j, k, l, t, h, m, 1, q, r, up) (3) eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) (4) eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_4#(n, i, j, k, l, t, 1, m, p, q, r, up) (5) eval_4#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_5#(n, i, j, k, l, t, h, n, p, q, r, up) (6) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) | up (7) eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_7#(n, 1, j, k, l, t, h, m, p, q, r, up) (8) eval_7#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_8#(n, i, n, k, l, t, h, m, p, q, r, up) (9) eval_8#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_9#(n, i, j, n + 1, l, t, h, n, p, q, r, up) (10) eval_9#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, 2 * n, t, h, n, p, q, r, up) (11) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) | not up (12) eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_11#(n, i, j, 1, l, t, h, m, p, q, r, up) (13) eval_11#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_12#(n, i, j, k, n, t, h, m, p, q, r, up) (14) eval_12#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_13#(n, n + 1, j, k, l, t, h, m, p, q, r, up) (15) eval_13#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, 2 * n, k, l, t, h, m, p, q, r, up) (16) eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) (17) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p (18) eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, p, r, up) (19) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p (20) eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, m, r, up) (21) eval_18#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_19#(n, i, j, k, l, t, h, m - q, p, q, r, up) (22) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p (23) eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, p, up) (24) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p (25) eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, m, up) (26) eval_22#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m - r, p, q, r, up) (27) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 /\ r > 0 (28) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) (29) eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) (30) eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_27#(n, i, j, k + h, l, t, h, m, p, q, r, up) (31) eval_27#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_28#(n, i + 1, j, k, l, t, h, m, p, q, r, up) (32) eval_28#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q - 1, r, up) (33) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) (34) eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) (35) eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_31#(n, i, j, k + h, l, t, h, m, p, q, r, up) (36) eval_31#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_32#(n, i, j - 1, k, l, t, h, m, p, q, r, up) (37) eval_32#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q, r - 1, up) (38) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 { r, q } (39) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 { r, q } (40) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) | r > 0 (41) eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) (42) eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_36#(n, i, j, k + h, l, t, h, m, p, q, r, up) (43) eval_36#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_37#(n, i, j - 1, k, l, t, h, m, p, q, r, up) (44) eval_37#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r - 1, up) (45) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 (46) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 (47) eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) (48) eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_41#(n, i, j, k + h, l, t, h, m, p, q, r, up) (49) eval_41#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_42#(n, i + 1, j, k, l, t, h, m, p, q, r, up) (50) eval_42#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q - 1, r, up) (51) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 (52) eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_44#(n, i, j, k, l, t, -h, m, p, q, r, up) (53) eval_44#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_45#(n, i, j, k, l, k, h, m, p, q, r, up) (54) eval_45#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_46#(n, i, j, l, l, t, h, m, p, q, r, up) (55) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_47#(n, i, j, k, t, t, h, m, p, q, r, up) | m <= 0 (56) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) | m > 0 (57) eval_47#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_48#(n, i, j, k, l, t, h, m, p, q, r, not up) (58) eval_48#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_49#(n, i, j, k, l, t, h, m, 2 * p, q, r, up) | p >= n (59) eval_48#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) | p < n (60) eval_49#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_50#(n, i, j, k, l, t, h, m, p, q, r, up) | not up (61) eval_50#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_51#(n, 1, j, k, l, t, h, m, p, q, r, up) (62) eval_51#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) | i <= n (63) eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) (64) eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_51#(n, i + 1, j, k, l, t, h, m, p, q, r, up) ***** We apply the Graph Processor on D2 = (P2, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 2 2: 3 3: 4 4: 5 5: 6 11 6: 7 7: 8 8: 9 9: 10 10: 16 11: 12 12: 13 13: 14 14: 15 15: 16 16: 17 19 17: 18 18: 21 19: 20 20: 21 21: 22 24 22: 23 23: 26 24: 25 25: 26 26: 27 38 39 27: 28 33 28: 29 29: 30 30: 31 31: 32 32: 27 38 39 33: 34 34: 35 35: 36 36: 37 37: 27 38 39 38: 40 45 39: 45 40: 41 41: 42 42: 43 43: 44 44: 40 45 45: 46 51 46: 47 47: 48 48: 49 49: 50 50: 46 51 51: 52 52: 53 53: 54 54: 55 56 55: 57 56: 16 57: 58 59 58: 60 59: 3 60: 61 61: 62 62: 63 63: 64 64: 62 There are 2 SCCs. Processor output: { D3 = (P3, R UNION R_?, f, c) ; D4 = (P4, R UNION R_?, f, c) }, where: P3. (1) eval_51#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) | i <= n (2) eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) (3) eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_51#(n, i + 1, j, k, l, t, h, m, p, q, r, up) P4. (1) eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) (2) eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_4#(n, i, j, k, l, t, 1, m, p, q, r, up) (3) eval_4#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_5#(n, i, j, k, l, t, h, n, p, q, r, up) (4) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) | up (5) eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_7#(n, 1, j, k, l, t, h, m, p, q, r, up) (6) eval_7#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_8#(n, i, n, k, l, t, h, m, p, q, r, up) (7) eval_8#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_9#(n, i, j, n + 1, l, t, h, n, p, q, r, up) (8) eval_9#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, 2 * n, t, h, n, p, q, r, up) (9) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) | not up (10) eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_11#(n, i, j, 1, l, t, h, m, p, q, r, up) (11) eval_11#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_12#(n, i, j, k, n, t, h, m, p, q, r, up) (12) eval_12#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_13#(n, n + 1, j, k, l, t, h, m, p, q, r, up) (13) eval_13#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, 2 * n, k, l, t, h, m, p, q, r, up) (14) eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) (15) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p (16) eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, p, r, up) (17) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p (18) eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, m, r, up) (19) eval_18#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_19#(n, i, j, k, l, t, h, m - q, p, q, r, up) (20) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p (21) eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, p, up) (22) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p (23) eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, m, up) (24) eval_22#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m - r, p, q, r, up) (25) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 /\ r > 0 (26) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) (27) eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) (28) eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_27#(n, i, j, k + h, l, t, h, m, p, q, r, up) (29) eval_27#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_28#(n, i + 1, j, k, l, t, h, m, p, q, r, up) (30) eval_28#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q - 1, r, up) (31) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) (32) eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) (33) eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_31#(n, i, j, k + h, l, t, h, m, p, q, r, up) (34) eval_31#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_32#(n, i, j - 1, k, l, t, h, m, p, q, r, up) (35) eval_32#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q, r - 1, up) (36) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 { r, q } (37) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 { r, q } (38) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) | r > 0 (39) eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) (40) eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_36#(n, i, j, k + h, l, t, h, m, p, q, r, up) (41) eval_36#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_37#(n, i, j - 1, k, l, t, h, m, p, q, r, up) (42) eval_37#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r - 1, up) (43) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 (44) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 (45) eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) (46) eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_41#(n, i, j, k + h, l, t, h, m, p, q, r, up) (47) eval_41#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_42#(n, i + 1, j, k, l, t, h, m, p, q, r, up) (48) eval_42#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q - 1, r, up) (49) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 (50) eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_44#(n, i, j, k, l, t, -h, m, p, q, r, up) (51) eval_44#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_45#(n, i, j, k, l, k, h, m, p, q, r, up) (52) eval_45#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_46#(n, i, j, l, l, t, h, m, p, q, r, up) (53) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_47#(n, i, j, k, t, t, h, m, p, q, r, up) | m <= 0 (54) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) | m > 0 (55) eval_47#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_48#(n, i, j, k, l, t, h, m, p, q, r, not up) (56) eval_48#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) | p < n ***** We apply the Theory Arguments Processor on D3 = (P3, R UNION R_?, f, c). We use the following theory arguments function: eval_51# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] eval_52# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] eval_53# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] Processor output: { D5 = (P5, R UNION R_?, f, c) ; D6 = (P6, R UNION R_?, f, c) }, where: P5. (1) eval_51#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) | i <= n (2) eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (3) eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_51#(n, i + 1, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } P6. (1) eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) (2) eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_51#(n, i + 1, j, k, l, t, h, m, p, q, r, up) ***** We apply the Theory Arguments Processor on D4 = (P4, R UNION R_?, f, c). We use the following theory arguments function: eval_51# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] eval_52# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] eval_53# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] Processor output: { D7 = (P7, R UNION R_?, f, c) ; D8 = (P8, R UNION R_?, f, c) }, where: P7. (1) eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) (2) eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_4#(n, i, j, k, l, t, 1, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (3) eval_4#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_5#(n, i, j, k, l, t, h, n, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (4) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) | up { n, i, j, k, l, t, h, m, p, q, r, up } (5) eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_7#(n, 1, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (6) eval_7#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_8#(n, i, n, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (7) eval_8#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_9#(n, i, j, n + 1, l, t, h, n, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (8) eval_9#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, 2 * n, t, h, n, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (9) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) | not up { n, i, j, k, l, t, h, m, p, q, r, up } (10) eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_11#(n, i, j, 1, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (11) eval_11#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_12#(n, i, j, k, n, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (12) eval_12#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_13#(n, n + 1, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (13) eval_13#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, 2 * n, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (14) eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (15) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p { n, i, j, k, l, t, h, m, p, q, r, up } (16) eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, p, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (17) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p { n, i, j, k, l, t, h, m, p, q, r, up } (18) eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, m, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (19) eval_18#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_19#(n, i, j, k, l, t, h, m - q, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (20) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p { n, i, j, k, l, t, h, m, p, q, r, up } (21) eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, p, up) { n, i, j, k, l, t, h, m, p, q, r, up } (22) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p { n, i, j, k, l, t, h, m, p, q, r, up } (23) eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, m, up) { n, i, j, k, l, t, h, m, p, q, r, up } (24) eval_22#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m - r, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (25) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 /\ r > 0 { n, i, j, k, l, t, h, m, p, q, r, up } (26) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (27) eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (28) eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_27#(n, i, j, k + h, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (29) eval_27#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_28#(n, i + 1, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (30) eval_28#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q - 1, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (31) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (32) eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (33) eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_31#(n, i, j, k + h, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (34) eval_31#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_32#(n, i, j - 1, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (35) eval_32#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q, r - 1, up) { n, i, j, k, l, t, h, m, p, q, r, up } (36) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 { n, i, j, k, l, t, h, m, p, q, r, up } (37) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 { n, i, j, k, l, t, h, m, p, q, r, up } (38) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) | r > 0 { n, i, j, k, l, t, h, m, p, q, r, up } (39) eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (40) eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_36#(n, i, j, k + h, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (41) eval_36#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_37#(n, i, j - 1, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (42) eval_37#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r - 1, up) { n, i, j, k, l, t, h, m, p, q, r, up } (43) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 { n, i, j, k, l, t, h, m, p, q, r, up } (44) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 { n, i, j, k, l, t, h, m, p, q, r, up } (45) eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (46) eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_41#(n, i, j, k + h, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (47) eval_41#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_42#(n, i + 1, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (48) eval_42#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q - 1, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (49) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 { n, i, j, k, l, t, h, m, p, q, r, up } (50) eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_44#(n, i, j, k, l, t, -h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (51) eval_44#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_45#(n, i, j, k, l, k, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (52) eval_45#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_46#(n, i, j, l, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (53) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_47#(n, i, j, k, t, t, h, m, p, q, r, up) | m <= 0 { n, i, j, k, l, t, h, m, p, q, r, up } (54) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) | m > 0 { n, i, j, k, l, t, h, m, p, q, r, up } (55) eval_47#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_48#(n, i, j, k, l, t, h, m, p, q, r, not up) { n, i, j, k, l, t, h, m, p, q, r, up } (56) eval_48#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) | p < n { n, i, j, k, l, t, h, m, p, q, r, up } P8. (1) eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_4#(n, i, j, k, l, t, 1, m, p, q, r, up) (2) eval_4#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_5#(n, i, j, k, l, t, h, n, p, q, r, up) (3) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) | up (4) eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_7#(n, 1, j, k, l, t, h, m, p, q, r, up) (5) eval_7#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_8#(n, i, n, k, l, t, h, m, p, q, r, up) (6) eval_8#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_9#(n, i, j, n + 1, l, t, h, n, p, q, r, up) (7) eval_9#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, 2 * n, t, h, n, p, q, r, up) (8) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) | not up (9) eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_11#(n, i, j, 1, l, t, h, m, p, q, r, up) (10) eval_11#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_12#(n, i, j, k, n, t, h, m, p, q, r, up) (11) eval_12#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_13#(n, n + 1, j, k, l, t, h, m, p, q, r, up) (12) eval_13#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, 2 * n, k, l, t, h, m, p, q, r, up) (13) eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) (14) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p (15) eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, p, r, up) (16) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p (17) eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, m, r, up) (18) eval_18#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_19#(n, i, j, k, l, t, h, m - q, p, q, r, up) (19) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p (20) eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, p, up) (21) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p (22) eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, m, up) (23) eval_22#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m - r, p, q, r, up) (24) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 /\ r > 0 (25) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) (26) eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) (27) eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_27#(n, i, j, k + h, l, t, h, m, p, q, r, up) (28) eval_27#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_28#(n, i + 1, j, k, l, t, h, m, p, q, r, up) (29) eval_28#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q - 1, r, up) (30) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) (31) eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) (32) eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_31#(n, i, j, k + h, l, t, h, m, p, q, r, up) (33) eval_31#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_32#(n, i, j - 1, k, l, t, h, m, p, q, r, up) (34) eval_32#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q, r - 1, up) (35) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 { r, q } (36) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 { r, q } (37) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) | r > 0 (38) eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) (39) eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_36#(n, i, j, k + h, l, t, h, m, p, q, r, up) (40) eval_36#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_37#(n, i, j - 1, k, l, t, h, m, p, q, r, up) (41) eval_37#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r - 1, up) (42) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 (43) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 (44) eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) (45) eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_41#(n, i, j, k + h, l, t, h, m, p, q, r, up) (46) eval_41#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_42#(n, i + 1, j, k, l, t, h, m, p, q, r, up) (47) eval_42#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q - 1, r, up) (48) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 (49) eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_44#(n, i, j, k, l, t, -h, m, p, q, r, up) (50) eval_44#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_45#(n, i, j, k, l, k, h, m, p, q, r, up) (51) eval_45#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_46#(n, i, j, l, l, t, h, m, p, q, r, up) (52) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_47#(n, i, j, k, t, t, h, m, p, q, r, up) | m <= 0 (53) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) | m > 0 (54) eval_47#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_48#(n, i, j, k, l, t, h, m, p, q, r, not up) (55) eval_48#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) | p < n ***** We apply the Theory Arguments Processor on D5 = (P5, R UNION R_?, f, c). We use the following theory arguments function: eval_51# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] eval_52# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] eval_53# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] Processor output: { D9 = (P9, R UNION R_?, f, c) ; D10 = (P10, R UNION R_?, f, c) }, where: P9. (1) eval_51#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) | i <= n { n, i, j, k, l, t, h, m, p, q, r, up } (2) eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (3) eval_53#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_51#(n, i + 1, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } P10. (1) eval_51#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_52#(n, i, j, k, l, t, h, m, p, q, r, up) | i <= n ***** We apply the Graph Processor on D6 = (P6, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 2 2: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** We apply the Theory Arguments Processor on D7 = (P7, R UNION R_?, f, c). We use the following theory arguments function: eval_51# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] eval_52# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] eval_53# : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] Processor output: { D11 = (P11, R UNION R_?, f, c) ; D12 = (P12, R UNION R_?, f, c) }, where: P11. (1) eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (2) eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_4#(n, i, j, k, l, t, 1, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (3) eval_4#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_5#(n, i, j, k, l, t, h, n, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (4) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) | up { n, i, j, k, l, t, h, m, p, q, r, up } (5) eval_6#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_7#(n, 1, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (6) eval_7#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_8#(n, i, n, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (7) eval_8#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_9#(n, i, j, n + 1, l, t, h, n, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (8) eval_9#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, 2 * n, t, h, n, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (9) eval_5#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) | not up { n, i, j, k, l, t, h, m, p, q, r, up } (10) eval_10#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_11#(n, i, j, 1, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (11) eval_11#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_12#(n, i, j, k, n, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (12) eval_12#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_13#(n, n + 1, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (13) eval_13#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, 2 * n, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (14) eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (15) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p { n, i, j, k, l, t, h, m, p, q, r, up } (16) eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, p, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (17) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p { n, i, j, k, l, t, h, m, p, q, r, up } (18) eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, m, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (19) eval_18#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_19#(n, i, j, k, l, t, h, m - q, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (20) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p { n, i, j, k, l, t, h, m, p, q, r, up } (21) eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, p, up) { n, i, j, k, l, t, h, m, p, q, r, up } (22) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p { n, i, j, k, l, t, h, m, p, q, r, up } (23) eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, m, up) { n, i, j, k, l, t, h, m, p, q, r, up } (24) eval_22#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m - r, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (25) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 /\ r > 0 { n, i, j, k, l, t, h, m, p, q, r, up } (26) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (27) eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (28) eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_27#(n, i, j, k + h, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (29) eval_27#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_28#(n, i + 1, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (30) eval_28#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q - 1, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (31) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (32) eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (33) eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_31#(n, i, j, k + h, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (34) eval_31#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_32#(n, i, j - 1, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (35) eval_32#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q, r - 1, up) { n, i, j, k, l, t, h, m, p, q, r, up } (36) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 { n, i, j, k, l, t, h, m, p, q, r, up } (37) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 { n, i, j, k, l, t, h, m, p, q, r, up } (38) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) | r > 0 { n, i, j, k, l, t, h, m, p, q, r, up } (39) eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (40) eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_36#(n, i, j, k + h, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (41) eval_36#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_37#(n, i, j - 1, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (42) eval_37#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r - 1, up) { n, i, j, k, l, t, h, m, p, q, r, up } (43) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 { n, i, j, k, l, t, h, m, p, q, r, up } (44) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 { n, i, j, k, l, t, h, m, p, q, r, up } (45) eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (46) eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_41#(n, i, j, k + h, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (47) eval_41#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_42#(n, i + 1, j, k, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (48) eval_42#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q - 1, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (49) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 { n, i, j, k, l, t, h, m, p, q, r, up } (50) eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_44#(n, i, j, k, l, t, -h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (51) eval_44#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_45#(n, i, j, k, l, k, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (52) eval_45#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_46#(n, i, j, l, l, t, h, m, p, q, r, up) { n, i, j, k, l, t, h, m, p, q, r, up } (53) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_47#(n, i, j, k, t, t, h, m, p, q, r, up) | m <= 0 { n, i, j, k, l, t, h, m, p, q, r, up } (54) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) | m > 0 { n, i, j, k, l, t, h, m, p, q, r, up } (55) eval_47#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_48#(n, i, j, k, l, t, h, m, p, q, r, not up) { n, i, j, k, l, t, h, m, p, q, r, up } (56) eval_48#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) | p < n { n, i, j, k, l, t, h, m, p, q, r, up } P12. (1) eval_2#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_3#(n, i, j, k, l, t, h, m, p, q, r, up) ***** We apply the Graph Processor on D8 = (P8, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 2 2: 3 8 3: 4 4: 5 5: 6 6: 7 7: 13 8: 9 9: 10 10: 11 11: 12 12: 13 13: 14 16 14: 15 15: 18 16: 17 17: 18 18: 19 21 19: 20 20: 23 21: 22 22: 23 23: 24 35 36 24: 25 30 25: 26 26: 27 27: 28 28: 29 29: 24 35 36 30: 31 31: 32 32: 33 33: 34 34: 24 35 36 35: 37 42 36: 42 37: 38 38: 39 39: 40 40: 41 41: 37 42 42: 43 48 43: 44 44: 45 45: 46 46: 47 47: 43 48 48: 49 49: 50 50: 51 51: 52 53 52: 54 53: 13 54: 55 55: There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D13 = (P13, R UNION R_?, f, c) }, where: P13. (1) eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) (2) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p (3) eval_16#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, p, r, up) (4) eval_15#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p (5) eval_17#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_18#(n, i, j, k, l, t, h, m, p, m, r, up) (6) eval_18#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_19#(n, i, j, k, l, t, h, m - q, p, q, r, up) (7) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) | m >= p (8) eval_20#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, p, up) (9) eval_19#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) | m < p (10) eval_21#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_22#(n, i, j, k, l, t, h, m, p, q, m, up) (11) eval_22#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m - r, p, q, r, up) (12) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 /\ r > 0 (13) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) (14) eval_25#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) (15) eval_26#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_27#(n, i, j, k + h, l, t, h, m, p, q, r, up) (16) eval_27#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_28#(n, i + 1, j, k, l, t, h, m, p, q, r, up) (17) eval_28#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q - 1, r, up) (18) eval_24#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) (19) eval_29#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) (20) eval_30#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_31#(n, i, j, k + h, l, t, h, m, p, q, r, up) (21) eval_31#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_32#(n, i, j - 1, k, l, t, h, m, p, q, r, up) (22) eval_32#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_23#(n, i, j, k, l, t, h, m, p, q, r - 1, up) (23) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 { r, q } (24) eval_23#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 { r, q } (25) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) | r > 0 (26) eval_34#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) (27) eval_35#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_36#(n, i, j, k + h, l, t, h, m, p, q, r, up) (28) eval_36#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_37#(n, i, j - 1, k, l, t, h, m, p, q, r, up) (29) eval_37#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_33#(n, i, j, k, l, t, h, m, p, q, r - 1, up) (30) eval_33#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) | r <= 0 (31) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) | q > 0 (32) eval_39#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) (33) eval_40#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_41#(n, i, j, k + h, l, t, h, m, p, q, r, up) (34) eval_41#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_42#(n, i + 1, j, k, l, t, h, m, p, q, r, up) (35) eval_42#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_38#(n, i, j, k, l, t, h, m, p, q - 1, r, up) (36) eval_38#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) | q <= 0 (37) eval_43#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_44#(n, i, j, k, l, t, -h, m, p, q, r, up) (38) eval_44#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_45#(n, i, j, k, l, k, h, m, p, q, r, up) (39) eval_45#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_46#(n, i, j, l, l, t, h, m, p, q, r, up) (40) eval_46#(n, i, j, k, l, t, h, m, p, q, r, up) => eval_14#(n, i, j, k, l, t, h, m, p, q, r, up) | m > 0 ***** No progress could be made on DP problem D9 = (P9, R UNION R_?, f, c).