We consider universal computability of the LCTRS with only rule scheme Calc: Signature: if :: Bool -> Int -> Int -> Int pow :: Int -> Int -> Int Rules: pow(x, y) -> if(y > 0, x, y) if(true, x, y) -> x * pow(x, y - 1) if(false, x, y) -> 1 The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) pow#(x, y) => if#(y > 0, x, y) (2) if#(true, x, y) => pow#(x, y - 1) ***** We apply the Theory Arguments Processor on D1 = (P1, R UNION R_?, f, c). We use the following theory arguments function: if# : [1, 2, 3] pow# : [1, 2] Processor output: { D2 = (P2, R UNION R_?, f, c) ; D3 = (P3, R UNION R_?, f, c) }, where: P2. (1) pow#(x, y) => if#(y > 0, x, y) (2) if#(true, x, y) => pow#(x, y - 1) { x, y } P3. (1) if#(true, x, y) => pow#(x, y - 1) ***** We apply the Theory Arguments Processor on D2 = (P2, R UNION R_?, f, c). We use the following theory arguments function: if# : [1, 2, 3] pow# : [1, 2] Processor output: { D4 = (P4, R UNION R_?, f, c) ; D5 = (P5, R UNION R_?, f, c) }, where: P4. (1) pow#(x, y) => if#(y > 0, x, y) { x, y } (2) if#(true, x, y) => pow#(x, y - 1) { x, y } P5. (1) pow#(x, y) => if#(y > 0, x, y) ***** We apply the Graph Processor on D3 = (P3, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** No progress could be made on DP problem D4 = (P4, R UNION R_?, f, c).